SYDNEY GRAMMAR SCHOOL

2006 FORM VI TRIAL HSC EXAMINATION

Chemistry Marking scheme and CRIB

General Instructions

- Reading time 5 minutes.
- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and class at the top of each page in Part B and on the answer booklet

CHECKLIST	
Each boy should have the following:	
1 Question Paper	
1 Multiple Choice Answer Sheet	
1 8 - Page Booklet	

Chemistry Classes.

l JAG	2 JME	3 AKBB
4 MMB	5 AKBB	6 JAG

Section I Pages 2 - 24

Total marks (100)

This section has two parts, Part A and Part B

Part A

Total marks (15)

- Attempt Questions 1-15
- Allow about 25 minutes for this Section

Part B

Total marks (69)

- Attempt Questions 16-29
- Allow about 2 hours for this Section

Section II Pages 25-28 Total marks (16)

- Attempt Question 30 in this section.
- Allow about 35 minutes for this Section

Part A Total marks (15) Attempt Questions 1-15 Allow about 25 minutes for this Part

- 1. A
- 2. A
- 3. D
- 4. D
- 5. A
- 6. C
- 7. B
- 8. B
- 9. A
- 10. C
- 11. B
- 12. C
- 13. C
- 14. C
- 15. C

Part B

Total marks (69)
Attempt ALL Questions
Allow about 2 hours for this Part

Class Candidate Number

Answer the questions in the spaces provided Show **all** relevant working in questions involving calculations

Marks

Question 16 (6 marks)

At the start of the HSC course you performed an experiment that allowed you to distinguish between alkanes and alkenes.

(a) Identify an alkane and an alkene which you used in this experiment plus any other reagents used.

2

Name a specific alkane and alkene (1 mark)

which could have been used by them and bromine water (1 mark)

(b) Identify the hazards involved in this experiment.

2

Organics – flammable and toxic

 Br_2 – corrosive and toxic

(c) Write an equation for any reaction which occurred.

2

Any completely correct equation (2 marks)

minus 1 mark for every mistake

e.g.

If alkane substitution reaction is used U.V. must be included in equation

Question 17 (3 marks)

Distinguish between stable and radioactive isotopes and identify the conditions under which a nucleus is unstable.

Definition of radioisotope (not using terms unstable or emit radiation) (1 mark)

Must be correct i.e. non-linear progression. Large nuclei (if specific size given, must be correct) (1 mark)

e.g. For elements with a small atomic mass there is a stable ratio of protons:neutrons known as the zone of stability. Isotopes whose proton:neutron ratio lies outside this zone are unstable and will decay/disintegrate/break-up. In addition if nuclei are very large (atomic no.>83) they are unstable and will decay.

Question 18 (2 marks)

Complete the following table, which refers to a number of titrations carried out in a school laboratory using solutions in the range 0.1-0.5M.

Titrant	Other reactant	Appropriate indicator
HCl	NaOH	Bromothymol blue Methyl orange Phenolphthalein
CH₃COOH	LiOH	Phenolphthalein
NH ₃	HNO ₃	Methyl orange

all correct (2 marks) one mistake (1 mark) 2

3

Class

Candidate Number

Marks

Question 19 (4 marks)

(a) Draw a labelled diagram of an operating galvanic cell that is made up of two half cells, each containing a metal in contact with its ions. Label the cathode, the anode, and the salt bridge.

3

Diagram (1 mark)

Metal + metal ions, salt bridge (lmark)

Identified cathode and anode, named electrolyte in salt bridge (1 mark)

(b) Calculate the voltage of this cell under standard conditions.

1

Values are given to 2 decimal places :. so should answers be. Calculate means show working.

$$Mg/Mg2+//Zn2+/Zn = 1.60V$$

$$Mg/Mg2+///Cu^{2+}/Cu = 2.70V$$

$$Mg/Mg^{2+}//Ag^{+}/Ag = 3.16V$$

etc

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Question 20 (3 marks)

Explain why the Haber process is based on a delicate balancing act involving reaction energy, reaction rate and equilibrium.

3

State Haber process exothermic. If $T \uparrow rate \uparrow but yield \downarrow (1 mark)$

Explain rate needs to be reasonably high so process economically viable (1 mark)

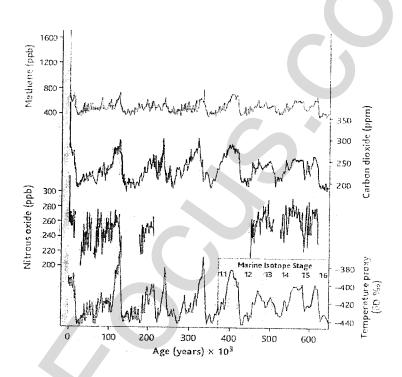
'Compromise' temperature chosen and explanation (both rate and yield considered) (1 mark)

Question 21 (3 marks)

Compare one physical and one chemical property of the oxygen allotropes O_2 and O_3 and account for the differences on the basis of structure and bonding.

3

Describe structure (shape) and bonding (polar) in both O_2 and O_3 (1 mark)


Compare 1 physical and 1 chemical property of O_2 and O_3 (2 marks)

	L
Class	Candidate Number

Question 22 (4 marks)

Consider the data on the greenhouse gases presented in the graph below.

The greenhouse gas and deuterium (δD) records for the past 650,000 years from ice cores. δD , the deviation of the deuterium/hydrogen ratio from an isotope standard, is a proxy for air temperature; more positive values indicate warmer conditions.

(a) Which gas was most abundant in the atmosphere 500 000 years ago?

1

 CO_2

(b) Write chemical formulas for the three gases.

1

 N_2O , CO_2 , CH_4

(c) Assess the validity of the claim that these three gases are greenhouse gases.

2

Validity - supported by data presented

Identify graph feature (1 mark)

Identify feature (correlation between peaks) and identify if this feature supports the claim (2 marks)

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number
Question 23 (4 marks)		Marks
Discuss the use of neutralisation in de	ealing with an acid spill in	a laboratory.
Identify a problem caused by spilt ac	id e.g. corrosion.	
Identify the need for safe clean up		
Identify the need for safe disposal (en	nvironment)	
Discuss one method that meets these	criteria	
Identify one method and explain why	it is chosen	
And an appropriate neutralising agen	nt	•

Class

Candidate Number

Marks

Question 24 (4 marks)

One acidic oxide found in the atmosphere is $SO_{2(g)}$.

(a) Name one natural and one industrial source of $SO_{2(g)}$.

1

Must have both e.g. natural - volcano

Industrial – fossil fuel combustion

(b) Write an equation to demonstrate the acidic nature of $SO_{2(g)}$.

1

$$SO_{2(g)} + H_2O_{(l)} \rightarrow H_2SO_{3(aq)}$$

(c) At 25°C and 100kPa, what volume of SO_{2(g)} would be needed to produce 500mL of 1.05M sulfurous acid?

2

$$n(SO_2) = n(H_2SO_3) = 0.500 \times 1.05 (1 \text{ mark})$$

V(SO₂) at 25°C and 100kPa

$$= 0.500 \times 1.05 \times 24.19L$$

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

5

Candidate Number

Question 25 (5 marks)

In an experiment to determine the ammonia concentration in a bottle of cloudy ammonia, a student transferred a 25.00mL aliquot of cloudy ammonia to a 250.0mL volumetric flask and made it up to 250.0 mL with deionised water. The contents of this volumetric flask were thoroughly mixed. The student then titrated 25.00mL aliquots of this solution against 0.2530M HCl and obtained an average titre volume of 22.50mL. Assume the density of the ammonia solution is 0.950 g/mL.

> Calculate the concentration of NH3 in the cloudy ammonia as %w/w (grams per 100g of solution).

$$NH_{3(aq)} + H^{\dagger}_{(aq)} \rightarrow NH_{4(aq)}^{\dagger} (1 \text{ mark})$$

$$n(NH_3)_{dil} = n(HCl) = 0.02250 \times 0.2530 mol (2 marks)$$

$$[NH_3]_{undil} = \frac{0.02250x0.2530}{0.02500} \times 10 = 2.277M (3 \text{ marks})$$

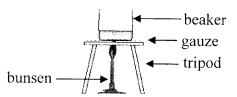
$$conc(NH_3) = 2.277 \times 17.034 = 38.79g/L$$
 (4 marks)

$$\frac{38.79}{950}$$
 x $100 = 4.08\%$ w/w (5 marks)

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

	Form VI Chemistry		2006 Trial Examination
		Class	Candidate Number
Ques	tion 26 (7 marks)		Marks
Chen impo	nical monitoring of the concentra rtant to manage the quality of wa	ations of ions such as Mg ²⁺ , ater resources.	, Ca ²⁺ , NO ₃ ⁻ , PO ₄ ³⁻ is
	ne cation and one anion from the		
(a)	Identify a possible source an of human activity.	d state whether the source i	s natural or a result 2
	Correctly identifies one catio	on, source; natural (1 mark,	
	Correctly id one cation and o	one anion AND specific sou	rces; natural/not (2
(b)	Explain why monitoring and ions you have chosen is impo		trations of the <u>two</u> 2
	ID 'water hardness' AND 'ea	\downarrow (1 mag	urk)
	ID AND explains problems c marks)	aused by hardness and eutr	cophication (2
(c)	Discuss the range and chemis have chosen.	stry of tests used to monitor	one of the ions you 3
	ID one specific test OR expla different tests (1 mark)	in that different conditions	concs require
	ID one test AND its range Of	R chemistry (2 marks)	
	ID two tests (one specific) AN	ND range AND chemistry (3	3 marks)

Form VI Chemistry			2006 Trial Examination
		Class	Candidate Number
Questi	on 27 (8 marks)		Marks
Humar atmosp	activity has caused changes in there.	he composition and structur	re of the
(a)	Identify the origins of CFCs an	nd halons in the atmosphere	1
	ID CFCs and halons as anthro	pogenic (1 mark)	
(b)	Explain the impacts of CFCs ar	nd halons on the atmospher	e. 4
	ID gases as GHG (greenhouse	gas) OR ozone depleting (1	mark)
	ID gases as GHG AND O3 dept	leting	
	OR ID gases such as O ₃ deplete	ing AND explains problems	caused (2 marks)
	AND		
	Relates GHG OR O3 destruction	on to properties of CFCs/ha	lons (3-4 marks)
	Question 2	7 continued on next page.	


	Form VI Chemistry		2006 Trial Examination
	Question 27 continued	Class	Candidate Number
(c)	Assess the measures being tal CFCs.	ken to alleviate the problem	s associated with 3
	ID search for replacements (I mark)	HCFC or HFC) and interna	tional protocols (1
	Assesses one measure (1-2 me	arks)	
	Assesses two measures (2-3 m	narks)	
	Distinguish clearly between C) ₃ depletion and Global Wa	rming
	NB: Kyoto protocol : GHG		
	Montreal (Vienna, Copenhage	en) : CFC	♦

esterification.

Form VI Chemistry		2006 Trial Examination
Ouestion 28 continued	Class	Candidate Number

2

(d) Explain why the apparatus you drew in (c) would be more appropriate than the apparatus below.

ID two features or explains one feature (1 mark)

ID volatility and flammability AND explains problems (2 marks)

NB: "explosion" etc very popular when 'ignite', 'catch fire' etc would be better

BP: hexanol 158°C

Propanoic acid 140°C

Ester 190°C

Water 100°C

 H_2SO_4 337°C

Form VI Chemistry	2006 Trial Examination
Form VI Chemistry	2006 Trial Examination

Class	Candidate Number

Form VI Chemistry		2006 Trial Exami	nation
	Class	Candidate Num	ber
Question 29 (8 marks)			Marks
It has been said that in the 21 st century resources such as oil and water, and sor	wars will be fought for a	access to natural has already begun.	8
Discuss the need for alternative sources petrochemicals and evaluate the effect to on environmental concerns such as glob	s of the compounds pres that using these alternati	ently obtained from	
Problems associated with current use:			
• identifies one problem (1 mark)			
• named derivative and one problem			
• identifies two problems	(2 marks)	7	
• explains one problem			
• discusses two or more problems (3 m	narks)		
Alternative Sources:			
• identifies an alternative source (1 mc	ark)		
• identifies two alternative sources		_	(2 marks)
• gives details about production proces	ss (i.e equation/bacteria	name of alternative)	,
Critical evaluation of effects of alternati	ive use:		
• identifies an effect on an environmen	tal concern (1 mark)		
• identifies two effects or discusses one	e (2 marks)		
• critically evaluates 2 or more effects concerns (3 marks)	of alternative sources u	se on environmental	

Attainations - Fuel - ethonof Oraquines 1255 Cy men server 16/16

and determine communitate comments on philadelphias from some in

scanforestion is contained the same concerning

(3 miles in the few I make the top that the consequence the trace of

Thenerabe and to produced from to modulous of give 1000 . See the foly

who of these where this true value in their they

the processing in Apparent the extra confliction in 1881 5

Marthes Therebyers our (1186 com by the experiencely inchessed

Comment of the State of Comment of the State of the Comment of the State of State of

principalities of the Man of Area has transfer to Boogs 1. A Division of open and the

replace princers as persophyse in PHB are send, to do water production of the send of the production becomes the company of the send of th

Great the state of the Man Manager and south process where the state of

Lorm VI Chemistry	2006 Trial Examination
Class	Candidate Number
	Marks
Question 29 (8 marks)	
It has been said that in the 21 st century wars will be fought to resources such as oil and water, and some people feel that the	For access to natural 8
Discuss the need for alternative sources of the compounds petrochemicals and evaluate the effect that using these alter on environmental concerns such as global warming.	presently obtained from
Phart Frail facts accounterfuelle 1	
According, hour sees need to find all sometic	.c.,15188.3
. 1811 Reverbler Scrate Secretes 6411 ollows we	leionsarce.ffossil porte
and also prevent further land stogether be	
SJAN AMERIKA 2013 Januar Amerika	CRANE MERCHANIST XXXXXXX
Kallinar lant 8. des <u> Alex o_{gra} far la 1806, et a seco</u> nglistely i	demokrasket Herce he coly the t
The are produced harded instead of the	C. which are he received the
-k. 24.6.6	Marker, Som legge emogeste j
Andre histori, rigured able is abor	drummer the first relacing
Maring grand regulation of the fixed fixed s	which de est completely
musicalist, in the contractions to the server of the serve	Like SO Flore non riner
Marie marinkite kostkogil wold sase the	Antiber Joseph Glabel everin
di Stantinia (#20.000 ktg., disedayi allakte., pla che.,	L. prodused by E- (66)
1. 18. 1.981. 18. CO. E. G. Mary J. Hamsen Judennier er & C. M. er seg	them thouse the burger of
South South Regard and Mr. 15 the petrological	and and in how then he soll
163 Sectoquel 186 A. March he Charged, com to do se	gne resserted Mick CON while with about I A H
The Allie due to Sundilling long	Tooly on regular
and many conserved forest Links in hour of	will topy of left so thick
Mose Abbreville Siscerces, Hough Expression	

Form	VI	Chemistry
------	----	-----------

2006 Trial Examination	

Class

Candidate Number

Section II			
16 marks		Class	Candidate Number
	on 30 in this section. minutes for this section	on.	
Answer the quest Show all relevan	tion in a writing book t working in question	let. Extra writing bookl s involving calculations	lets are available.
			Pages
Question 30	Industrial Chen	nistry	27
Question 31	Elective 2		
Question 32	Elective 3		
Question 33	Elective 4		
Question 34	Elective 5		

Class	Candidate Number

Class	Candidate Number

1

1

Question 30 (16 marks)

- (a) Most sulfuric acid is manufactured on the industrial scale using the Contact process which involves the conversion of sulfur dioxide gas into sulfur trioxide gas.
 - (i) Write a chemical equation for this reaction and an expression for the equilibrium constant, K.

$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$$

$$K = [SO_3]^2/[SO_2]^2[O_2]$$
 both for 1 mark

(ii) How does an increase in pressure affect the value of the equilibrium constant?

Pressure does not affect K

(b) Nitrogen dioxide is a poisonous brown gas which may be involved in the production of photochemical smog.

In an experiment 5.0 mol of dinitrogen tetraoxide were added to a 20L vessel and the system reached equilibrium. At equilibrium 3.8 mol of dinitrogen tetraoxide remained. Calculate the equilibrium constant, K, for this reaction:

$$N_2O_{4(g)}$$
 \longrightarrow $2NO_{2(g)}$

Initial n 5.0 0 (1 mark)

At equilibrium n 3.8 $(5.0-3.8)2 = 2.4$

At equilibrium [] mol/L $\frac{3.8}{20}$ $\frac{2.4}{20}$
 (0.19) (0.12) (1 mark)

 $K = [NO_2]^2/[N_2O_4]$ (1 mark)

 $= (0.12)^2/0.19 = 7.6 \times 10^{-2}$ (1 mark)

Class	Candidate Number

(c) Describe one reaction in which concentrated sulfuric acid is acting as an oxidant. Include a relevant chemical equation.

2

2

A correct equation (1 mark)

Description of reaction explaining redox (1 mark)

'Bare' equation and little or no desription (1 mark)

'Best' examples

oxidation state $\begin{array}{c} -1 & +6 & 0 & +4 \\ 2KI_{(s)} + 2H_2SO_{4(l)} \rightarrow I_{2(s)} + K_2SO_{4(aq)} + SO_{2(g)} + 2H_2O_{(l)} \\ purple \\ vapour/dark \\ solid \end{array}$

(ii) Describe one reaction in which concentrated sulfuric acid is acting as a dehydrating agent. Include a relevant chemical equation.

Easiest example dehydration of sucrose or glucose and black cone of carbon, like pumice (1 mark)

 $C_{12}H_{22}O_{11(s)} \xrightarrow{conc} 12C_{(s)} + 11H_2O_{(l)} (1 \text{ mark})$

- During your practical work you have performed a first-hand investigationate Number analyse the effect of disturbing an equilibrium reaction.
 - (i) Outline the procedure you used in this investigation.

3

Equation for equilibrium system (1 mark)

Identify 3 disturbances in system and how these changes were detected (2 marks)

Best systems:

$$Co^{2+}_{(aq)} + 4Cl^{-}_{(aq)} = CoCl_4^{2-}_{(aq)}$$

 $pink$ $blue$

$$Fe^{3+}_{(aq)} + CNS^{-}_{(aq)}$$
 FeCNS²⁺_(aq) yellow colourless blood red

(ii) Explain how you analysed the equilibrium reaction in a qualitative way.

3

Control must be mentioned (1 mark)

Change in system identified – 3 disturbances (1 mark)

Changes explained in terms of Le Chatelier's principle

.

1	
CI	
Class	Candidate Number

Data Sheet

Avogadro's constant, N _A		6.022 x10 ²³ mol ⁻¹
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0 °C (273 K)	22.71L
	at 25 °C (298K)	
Ionisation constant for water	at 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water	er	$1.18 \times 10^3 \text{ Hz} \text{ g}^{-1} \text{ V}^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^{+}] \qquad \Delta H = -mC\Delta T$$

Standard Potentials

$K^+ + e^-$		$K_{(s)}$	-2.94 V
$Ba^{2+} + 2e^{-}$		$Ba_{(s)}$	-2.91 V
$Ca^{2+} + 2e^{-}$		$Ca_{(s)}$	−2.87 V
$Na^+ + e^-$		Na _(s)	2.71 V
$Mg^{2+} + 2e^{-}$	===	$Mg_{(s)}$	-2.36 V
$Al^{3+} + 3e^{-}$		$Al_{(s)}$	-1.68 V
$Mn^{2+} + 2e^{-}$		$Mn_{(s)}$	-1.18 V
$H_2O + e^-$		$\frac{1}{2} H_{2(g)} + OH^{-}$	-0.83 V
$Zn^{2+} + 2e^{-}$		$Zn_{(s)}$	−0.76 V
$Fe^{2+} + 2e^{-}$		$Fe_{(s)}$	-0.44 V
$Ni^{2+} + 2e^{-}$		$Ni_{(s)}$	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$		$Sn_{(s)}$	-0.14 V
$Pb^{2+} + 2e^{-}$		$Pb_{(s)}$	-0.13 V
$H^+ + e^-$		½ H _{2(g)}	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$		$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$		$Cu_{(s)}$	0.34 V
$\frac{1}{2} O_{2(g)} + H_2 O + 2e^{-1}$		2OH ⁻	0.40 V
$Cu^+ + e^-$		$Cu_{(s)}$	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-}$	\rightleftharpoons	I.	0.54 V
$\frac{1}{2}I_{2(aq)} + e^{-}$		\mathbf{I}^-	0.62 V
$\mathrm{Fe^{3^+} + e^-}$	₩	Fe ²⁺	0.77 V
$Ag^{+} + e^{-}$	\rightleftharpoons	$Ag_{(s)}$	0.80 V
$\frac{1}{2} Br_{2(1)} + e^{-}$	←	Br^-	1.08 V
$\frac{1}{2} Br_{2(aq)} + e^{-}$		Br	1.10 V
$\frac{1}{2}$ O ₂ + 2H ⁺ + 2e ⁺	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2} \operatorname{Cr_2O_7}^{2-} + 7 \operatorname{H}^+ + 3 \operatorname{e}^-$	~	$Cr^{3+} + \frac{7}{2} H_2O$	1.36 V
$^{1}/_{2} \operatorname{Cl}_{2(g)} + e^{-}$	===	Cl	1.36 V
$\frac{1}{2} \text{Cl}_{2(aq)} + e^{-}$		Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-}$	===	F-	2.89 V

	ſ	ne des esdents, ser	<u> </u>		•••	T	**********	01s +> + exem	T						· •	-			Samushau r		
	건물	4.003 Helium	0;	20.18	N.	824	39.95	Agen	36	2 %	Krawicz	45°	1313	X CO	86	E 22.2	Reda				
			0 /n	19.00	Fleaning	20	35.45	Chloring	X)d	70.00	Brarance	\$3	126.9	locine	85	10 01 01	Attetion		NOW STATE OF THE PARTY OF THE P	M Transphysyllers	-
			∞C	16.00	C. C. C.	75°C	32.07	Suffer	45.0	3 %	Sclerica	75°	127.6	Tellmin	84	709 01	Pological		militara va va		
			r-;2	14.01	Nitrogra	'Sa.	30.97	Photophone	33	74.92	Angric	જ્ય	121.8	Actions	533	100 p	Figure		William to the	-	
			ω	12.01	ुक्क	<u>7</u> .%	28.09	Salicon	25	72.64	Cremanium	250	118.7	£	252	207.2	, P				
			ഗമ	10.81	Porto	ध्य	26.98	Aleminiem	33	69.72	Callitan	49 In	114.8	Poten	150 150 1	204.4	Thellien		***************************************	***************************************	
S			A A A A A A A A A A A A A A A A A A A						330	65.41	7.iz	48 Od	112.4	Cadmium	S ₇	200.6	Mercury				
ELENATION TO					Ħ				සිටී	63.55	Copper	47 Ag	107.9	Silver	79 114	197.0	Pleg	111	27.27	Romigenium	
四里			Symbol of element		Name of element				87.	58.69	Nich	94 Pd	106.4	Palladium	78	195.1	Flattour	011	[271]	H	
SLE OF		KEY	53	197.0	Gold				56	58.93	Cobalt	45	102.9	Phodium	77	192.2	Hidren	109 W	[268]		
PERIODIC TABLE OF			Atomic Number	Atomise Weight	1				726 Fe 6	55.85	ben	44 Ru	101.1	Rutherium	259	190.2	Osmiten	F.08	[277]	Hassium	
PERIO			र्ने	- ₹.					£25	54.94	Mengancar	£5.	[167.6]	Technotium	75 Re 5	186.2	Rhentum	10.7 Ph	[264.1]	Bohnium	
									₹ 5	52.00	Chromitum	24 <u>%</u>	95.94	Maybdenen	73≥	183.8	Tungsten	106 Se	[266.1]	Seeborgum	
									<53	50.94	Variation	2 5	92.91	Niodium	E2幅	180.9	Isotalum	පුදු	[262.1]	Dubnium	
4									SE	47.87	Blanium	84Z	91.22	Ziromiun	元五	178.5	Hafrium	<u>2</u> 5	[261.1]	Uzbenkindum Uzbenkindum	
				>								₹3					Lattlerades	89□03		Actinides	
-			4 %	9.012	Beryllium	ZZ 88	24.31	NIBS ENDING	85	40.08	Calcium	Sr. Sr	87.62	Streethern	88	137.3	Benim	% a	[226.0]	Rockum	
-	Å 1.008	Hydrogen	Ľω	6.941	Lihim	-2	22.99	uniwanc	ÿΆ	39.10	Potensium	37 Rb	85.47	Kuthatum	ಜವ	132.9	Table 1	平平	[223.0]	Francium	

	1	[
7.1 175.0 Littlian		108 [1262.1]
70 Y25 173.0 Yilerbium		25 S L L
69 Tm 168.9 Thaliam		101 Wid [258.1] Mediterities
68 167.3 Efeira		Fm Fm [257.1]
67 Fo 164.9 Ildroum		99 Es [252.1] Enterprise
66 Dy 162.5 Dyproxium		98 Cf (251.1) Californium
65 Th 158.9 Terbium		24 42 E
94 Cd 157.3 Guddinsum		86. [247.1]
63 Eu 152.0 Ertpien		95 Am [243.1] Ammieten
62 Sm 150.4 Sementian		94 Pu [244.1] Pletesten
61 Pm [144.9] Promethium		93 Np [237.0] Nepterium
-60 Nd 144.2 Noodymium		92 U 238.0 Umrásan
59 Pr 140.9 Pracodynaium		91 Pa 231.0 Protectinien
Calign 140.1		90 Th 232.0 Deceium
57 La 138.9 Lauthanum	Actinides	89 . Ac [227.0] . Actinium
	59 60 61 62 63 64 65 66 67 68 69 70 70	Sp. 160 61 62 63 64 65 66 67 68 69 70 70

Where the atomic weight is not known. The relative atomic mass of the most common radioactive isotopie is shown in brankets. The atomic weights of Np and To are given for the isotopies. 29 Mp and 99 To.