NEW SOUTH WALES

Higher School Certificate

Tathematics Oxtension

Exercise 1/67

by James Coroneos*

1. Solve the following quadratic equations, expressing roots in the form a + ib, where a, b are real, and $i^2 = -1$.

(i)
$$x^2 - 4x + 5 = 0$$

(iii)
$$x^2 - 4x + 4 = 0$$

$$(\mathbf{v}) \ 2x^2 - 3x + 4 = 0$$

(vii)
$$x^2 - 2x \cos \theta + 1 = 0$$

(ix)
$$ix^2 - x + 4i = 0$$

(xi)
$$x^2 - 2i \sec \theta x - 1 = 0$$

(ii)
$$x^2 - 4x - 3 = 0$$

(iv)
$$x^2 + 4 = 0$$

$$(\mathbf{vi})$$
 $5x^2 - 12x + 17 = 0$

(viii)
$$x^2 + 2ix + 1 = 0$$

(x)
$$2x^2 - 6ix - 3 = 0$$

(xii)
$$x^2 \cos^2 \theta + x \sin 2\theta + 1 = 0$$

Verify that those quadratic equations with real coefficients have roots which are complex conjugates of each other, but that this is not so if the coefficients are themselves complex.

- (i) Show that $x^2 + x + 2 = (x^2 + x + \frac{1}{4}) + \frac{13}{4} = (x + \frac{1}{2})^2 \frac{7}{4}i^2$ **2**. $= \left[x + \frac{1}{2} - \frac{\sqrt{7}}{2}i\right]\left[x + \frac{1}{2} + \frac{\sqrt{7}}{2}i\right]$
 - (ii) Similarly find the complex factors of

(a)
$$x^2 - 2x + 10$$
 (b) $x^2 + 4x + 5$ (c) $x^2 - 6x + 14$ (d) $x^2 + 2ax + a^2 + b^2$

(e)
$$x^2 + 1$$

(f)
$$x^4 - 1$$

(e)
$$x^2 + 1$$
 (f) $x^4 - 1$ (g) $x^2 + x + 1$

- (i) Given that $b^2 c = -k^2$, where k > 0; show that the roots of the 3. equation $x^2 - 2bx + c = 0$ are $x = b \pm ki$.
 - (ii) If a, b, c are real and $b^2 < 4ac$, show that the roots of $ax^2 + bx + c = 0$ are complex conjugates.

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by AMS-TeX.

4. Noting that $x^3-1=(x-1)(x^2+x+1)$, prove that the solutions of $x^3=1$ are $x=1,\frac{-1+\sqrt{3}i}{2}$ and $\frac{-1-\sqrt{3}i}{2}$. These solutions are called the 3 cube roots of unity, since they ate the roots of $x^3=1$. The solutions $\frac{-1+\sqrt{3}i}{2},\frac{-1-\sqrt{3}i}{2}$ are the complex cube roots of unity, whilst x=1 is the real cube root of unity. If these complex roots are denoted by $\alpha=\frac{-1+\sqrt{3}i}{2},\beta=\frac{-1-\sqrt{i}}{2}$, verify that $\alpha^2=\beta,\alpha=\beta^2,\alpha^3=\beta^3=1,1+\alpha+\beta=0$. [Note, in actual practice, the roots of $x^3=1$ are usually written as $1,\omega,\omega^2$ and that $\omega^3=1$ and $1+\omega+\omega^2=0$]

