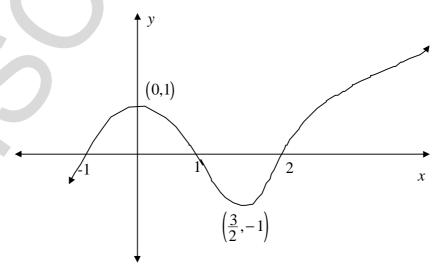
GRAPHS - WORKSHEET #4


Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

TOPIC

Graphs: General approach to curve sketching (Syllabus Ref: 1.8)
Using graphs (Syllabus Ref: 1.9)

- 1. Sketch the graph of the curve defined by the equation $x^2 + y^2 + 4xy + 3 = 0$, showing features including x- and y- intercepts and the coordinates of any stationary and critical points.
- 2. Sketch the graph of $x^2 + y^2 xy = 3$, showing x- and y- intercepts, critical points and stationary points.
- 3. Sketch the graph of $x^2 + 9y^2 = 9$, showing x- and y- intercepts, critical points and stationary points.
- 4. Sketch the graph of $y = x^x$, showing x- and y- intercepts, critical points and stationary points. (Hint: use implicit differentiation to find the derivative of $\ln y$.)
- 5. Sketch the graph of $x^2 + y^2 x^2y^2 = 0$.
- 6. Sketch the graph of $\sqrt{x-1} + \sqrt{y} = 1$.
- 7. Use the graph of the function y = f(x) sketched below to write down the range of values of c for which the equation f(x) + c 2 = 0 has three distinct roots. The co-ordinates of the two turning points are given.

- 8. Sketch the graph of $y = x(x^2 4)$. Find the set of values of the real number c if the number of real roots of the equation $x(x^2 4) + c = 0$ equals:
 - (i) 3
- (ii) 2
- (iii) 1
- 9. (i) Sketch the function $f(x) = x^3 + 1$.
 - (ii) On the same set of axes, sketch the function $g(x) = \frac{1}{x^3 + 1}$. Clearly indicate on your sketch the equations of the asymptotes and the co-ordinates of any stationary points or points of inflection of y = g(x).
 - (iii) Find the values of x for which $x^3 + 1 < \frac{1}{x^3 + 1}$.
- 10. Consider the graph of $y = x^3 kx^2 + k$, for k > 0.
 - (i) Find the co-ordinates of the stationary points and determine their nature.
 - (ii) By examining the graph of $y = x^3 kx^2 + k$ (for varying *positive* values of k), show that $x^3 kx^2 + k = 0$ has 3 distinct roots if $k > \frac{\sqrt{27}}{2}$.
- 11. Sketch the graph of $y = \frac{(x-1)^3}{x^3-1}$. Hence, or otherwise, determine the range of values of the real number c if the equation $(x-1)^3 = c(x^3-1)$ has no real roots.
- 12. Sketch the graph of y = x(x-1)(x-2). Find the set of values of the real number k if the number of real roots of the equation x(x-1)(x-2)-kx=0 equals:
 - (i) 2
- (ii) 3