

COMPLEX NUMBERS – WORKSHEET #2

COURSE/LEVEL

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

TOPIC

Complex Numbers: Geometric representation of complex numbers as points and vectors.
(Syllabus Ref: 2.2, 3.3)

1. If $z = 3 + i$ and $w = 2 - i$ find

(i) $z\bar{w} + iz$ (ii) $\left| \frac{w}{\bar{z}} \right|$ (iii) $\arg(w - z)$ (to the nearest degree)

2. Find the modulus and argument of $\frac{1+i}{\sqrt{3}-i}$.

3. If $z = 2 + 2i$, write the following in modulus-argument form.

(i) \bar{z} (ii) $z\bar{z}$ (iii) z^2 (iv) $\frac{1}{z}$

4. Express each of the following in the form $r(\cos \theta + i \sin \theta)$.

(i) $1 + i$ (ii) $1 - i$ (iii) $\sqrt{3} + i$ (iv) $\sqrt{3} - i$

Multiply each of these numbers by i and express the resulting complex numbers in the form $r(\cos \theta + i \sin \theta)$. What relation can you observe between $\arg z$ and $\arg iz$ in the above cases?

5. Let $z = a + ib$ where $a^2 + b^2 \neq 0$.

(i) Show that if $\operatorname{Im}(z) > 0$ then $\operatorname{Im}(\frac{1}{z}) < 0$. (ii) Prove that $\left| \frac{1}{z} \right| = \frac{1}{|z|}$.

6. If a is any complex number and z is such that $|z| = 1$ ($z \neq a$), show that $\left| \frac{z-a}{\bar{a}z-1} \right| = 1$.

7. If $|z_1 + z_2| = |z_1| + |z_2|$, show both algebraically and geometrically, that $\arg z_1 = \arg z_2$.

8. Show that $|z_1 + z_2| \geq ||z_1| - |z_2||$.

9. Show that for any two complex numbers z_1 and z_2 ,

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

Interpret this result geometrically. (Hint: Use $z\bar{z} = |z|^2$)

10. If z_1 and z_2 are complex numbers such that $|z_1 - z_2| \leq \frac{1}{2}|z_1|$, prove that $|z_2| \geq \frac{1}{2}|z_1|$ and $|z_1 + z_2| \geq \frac{3}{2}|z_1|$

11. If $|z - a| = r$, show that

$$z\bar{z} - a\bar{z} - \bar{a}z + a\bar{a} - r^2 = 0.$$

12. Let z_1 and z_2 be two complex numbers, where

$$z_1 = -2 + i, \text{ and}$$

$$|z_2| = 3 \text{ and } \arg z_2 = \frac{\pi}{3}$$

(i) On an Argand diagram plot the points A and B to represent the complex numbers z_1 and z_2 .

(ii) Plot the points C and D representing the complex numbers $z_1 - z_2$ and $i z_2$, respectively. Indicate any geometric relationships between the four points A , B , C and D .

13. In the complex plane the points P_1 , P_2 and P_3 represent the complex numbers z_1 , z_2 and z_3 respectively. If P'_1 , P'_2 and P'_3 represent the numbers $z_2 + z_3$, $z_3 + z_1$ and $z_1 + z_2$ respectively, show that the triangles $P_1 P_2 P_3$ and $P'_1 P'_2 P'_3$ are congruent.

14. The points A , B , C and D on an Argand diagram represent the complex numbers $2 + 2i$, 4 , $6 + 2i$ and $4 + 4i$ respectively. Prove that $ABCD$ is a square and find the complex number represented by the intersection of the diagonals.

15. The centre of a square is at the point $z_1 = 1 + i$ and one of the vertices is at the point $z_2 = 1 - i$. Find the complex numbers which correspond to the other vertices of the square.

16. $ABCD$ is a square in the Argand diagram (where the vertices are labelled anti-clockwise). $z_1 = 2 + 2i$ is represented by the vertex A and $z_2 = -1 + i$ is represented by the vertex B . Find:

(i) the complex number which represents the vertex diagonally opposite vertex A .

(ii) the length of the square's diagonal.

17. The complex number $z = 3 - 4i$ has two square roots z_1 and z_2 . Find z_1 and z_2 in the form $a + ib$. Show that the three points representing z , z_1 and z_2 on an Argand diagram, are the vertices of a right angled triangle.

18. (a) $ABCDEF$ is a regular hexagon on an Argand diagram. The centre of the hexagon is at the origin O . The vertex A represents the complex number z . Find the complex number represented by B (where B is the nearest vertex to A in the anti-clockwise direction.)

(b) If the hexagon is now rotated about O in an anti-clockwise direction by 45° . Find the complex number represented by the new position of point B .