Sercise 6

Extracts From

Taylors College COMPLEX NUMBERS Study Guide + ANSWERS

by Jacquie Hargreaves

Complex Roots of Unity (1)

Solve $z^n = 1$.
z^n has solution.
If n is odd, $z^n = 1$ has real solutions and complex nonreal solutions
in pairs because the coefficients of the polynomial are
Example: Solve $z^3 = 1$, i.e., find the cube roots of unity.
Method 1: Factorise $z^3 - 1$ and write the solutions in the form $a + ib$. If $\omega = \frac{-1 + i\sqrt{3}}{2}$
then $\overline{\omega} =$ Since ω is a solution to $z^3 = 1$ then $\omega^2 + \omega + 1 =$
Method 2: Let $z = rcis\theta$ and write the solutions in mod-arg form. The roots are equally spaced around
If n is even, $z^n = -1$ has real solutions and nonreal complex
solutions in pairs because the coefficients of the polynomial are
The roots are equally spaced around the Check if \pm is a possible
conjugate pair.
Examples: Solve $z^6 = -1$; $z^4 = -1$; $z^5 = -4 + 4i$; $z^5 = 1$
Examples. Solve $x = 1$, $x = 1$, $x = 1$
If n is even, $z^n = 1$ has real solutions and nonreal complex solutions
in pairs because the coefficients of the polynomial are The roots
are equally spaced around the When joined, the roots form a
with sides centred at and with vertex at
Example: Solve $z^6 = 1$.
If n is odd, $z^n = -1$ has real solutions of and nonreal
complex solutions in pairs because the coefficients of the polynomial are
The roots are equally spaced around the

Example: Solve $z^7 = -1$.

ANSWERS

Complex Roots of Unity (1)

 $n;\ 1;\ n-1;\ {\rm conjugate};\ {\rm real};\ 1,-\frac{1}{2}(1\pm i\sqrt{3});\ {\rm cis}\frac{2k\pi}{3},k=-1,0,1;\ {\rm a\ unit\ circle};\ 0,$ $n;\ {\rm conjugate};\ {\rm real};\ {\rm unit\ circle};\ i;\ {\rm cis}\frac{(2k+1)\pi}{6},k=-3,-2,-1,0,1,2;\ {\rm cis}\frac{(2k+1)\pi}{4},k=-2,-1,0,1;\ \sqrt{2}{\rm cis}\frac{(8k+3)\pi}{20},k=-2,-1,0,1,2;\ {\rm cis}\frac{2k\pi}{5},k=-2,-1,0,1,2;\ 2;\ (n-2);\ {\rm conjugate};\ {\rm real};\ {\rm unit\ circle};\ {\rm regular\ polygon};\ n;\ 0;\ {\rm the\ roots};\ {\rm cis}\frac{k\pi}{3},\ k=-3,-2,-1,0,1,2;\ 1;\ -1;\ (n-1);\ {\rm conjugate};\ {\rm real};\ {\rm unit\ circle};\ {\rm cis}\frac{(2k+1)\pi}{7},k=-3,-2,-1,0,1,2,3$