Sercise 1

Extracts from

Taylors College COMPLEX NUMBERS Study Guide + ANSWERS

by Jacquie Hargreaves

COMPLEX NUMBERS

COMPLEX NUMBERS
Q1 Write down some examples of
(i) real numbers (ii) integers (iii) rational numbers (iv) irrational numbers
Q2 Solve these quadratic equations and describe their roots. (i) $x^2 = 4$ (ii) $x^2 = \frac{1}{4}$ (iii) $x^2 = 3$ (iv) $x^2 = -4$
Definition: $i =$
Q4 Simplify (i) $3i + 4i$ (ii) $3 + 4i$ (iii) $3 \times 4i$ (iv) $3i \times 4i$.
Powers of i

Q1 Simplify i^n . Hint: Find i^2, i^3, i^4, i^5 .

Q2 Simplify i^{2002} .

Complex Numbers

Complex numbers are of the form $z = a + ib$ where a and b are real.
The real part of $z = \underline{} = \underline{}$
The imaginary part of $z = \underline{} = \underline{}$
If $a = 0$ then $z = $ We say z is
If $b = 0$ then $z = $ We say z is
Complex numbers are not ordered, i.e., $2+3i$ 3+2i but they obey the usual
number laws.
Q1 If $z = 3 + 4i$ then $\Re(z) = $ and $\Im(z) = $
Q2 '94 HSC If $z = a + ib$ find $\Im(4i - z)$.

Q3 Simplify (i) 3+4i+4-3i (ii) (3+4i)(4-3i) (iii) $(3+4i)^2$ (iv) (3+4i)(3-4i)

Conjugate of z

If z = a + ib then $\overline{z} = \underline{\hspace{1cm}}$

Q1 Find \overline{z} if z =

- (i) 3 + 4i (ii) 3 (iii) 4i.
- **Q2 '94 HSC** Find $\overline{3iz}$ in the form x + iy if z = a + ib.
- **Q3** Write $\frac{18+4i}{3-i}$ in the form x+iy. (This is called _______
- **Q4** Simplify $(3 + 4i)^{-2}$

Q6 '89 HSC Given that a, b, x, y are real, express the following in the form x + iy. (i) $(a+ib)\overline{(5+i)}$ (ii) $\frac{a+ib}{3+4i}$

Quadratic Equations

Solve for the set of complex numbers,

(i)
$$z^2 = -12$$
 (ii) $z^2 - 2z + 5 = 0$ (iii) $z^2 - 2z + 3$ (iv) $2z^2 - 6iz - 3 = 0$

If the coefficients of a quadratic equation are ______, then the roots form a ______ pair.

QQ Solve (a)
$$z^2 + iz = 2$$
 (b) $z\overline{z} = \frac{1}{4} + i$

The Square Roots of Complex Numbers

- 1. Expand $(a+ib)^2$
- **2.** Solve $z^2 = 5 12i$, i.e., find the square roots of 5 12i. Let z = a + ib where a and b are real.
- **3.** Solve $z^2 = i$
- **4.** Solve $z^2 (1 4i)z (5 i) = 0$.
- **5.** Solve $z^2 (1-i)z + 7i 4 = 0$
- **6. '91 HSC (i)** Find al pairs of integers x and y such that $(x+iy)^2 = -3-4i$. (ii) Using (i) or otherwise, solve $z^2 3z + (3+i) = 0$.
- 7. Prove that a non-zero complex number always has **two** square roots. Let $\sqrt{a+ib}=x+iy$ where a,b,x and y are real.

Then a + ib =

Equating the real and imaginary parts,

$$a = \underline{\hspace{1cm}}$$
 and $b = \underline{\hspace{1cm}}$

a= and b= . Now substitute into the identity $(x^2+y^2)^2=(x^2-y^2)^2+4x^2y^2$ $(x^2 + y^2)^2 =$ _____

Since x and y are real, $x^2 + y^2 \ge 0$ taking the square root then

$$x^2 - y^2 =$$
______(2)

Since
$$a^2 + b^2 \ge a^2$$
 then $\sqrt{a^2 + b^2} \ge a$ so RHS ≥ 0

$$\therefore x = \underline{\hspace{1cm}}$$

For each of these values of x there corresponds a unique value of $y = \frac{b}{2x}$. Thus a + ib has 2 square roots.

ANSWERS

COMPLEX NUMBERS

Q1 (i) 0.5 (ii) 1 (iii)
$$1/2$$
 (iv) $\sqrt{2}$

Q2 (i)
$$\pm 2 \subset \mathbb{R}$$
 (ii) $\pm \frac{1}{2} \subset \mathbb{Q}$ (iii) $\pm \sqrt{3} \subset \mathbb{R} \setminus \mathbb{Q}$ (iv) $\pm 2i \subset i\mathbb{R} \subset \mathbb{C}$.

$$i = \sqrt{-1}$$

Q4 (i)
$$7i$$
 (ii) can't be simplified (iii) $12i$ (iv) -12 .

Powers of i

Q1
$$i^n = i^{n \mod 4}$$
; $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$
Q2 -1

The real part of $z = \Re(z) = a$

The imaginary part of $z = \Im(z) = b$

If a = 0 then z = ib. We say z is purely imaginary.

If b = 0 then z = a. We say that z is purely real.

Complex numbers are not ordered, i.e., $2+3i \nleq 3+2i$ but they obey the usual number laws.

Q1 If
$$z = 3 + 4i$$
 then $\Re(z) = 3$ and $\Im(z) = 4$.

$$\Omega_{2} 4 - h$$

Q3 (i)
$$7 + i$$
 (ii) $24 + 7i$ (iii) $-7 + 24i$ (iv) 25.

Conjugate of z

If
$$z = a + ib$$
 then $\overline{z} = a - ib$.

Q1 (i)
$$3 - 4i$$
 (ii) 3 (iii) $-4i$

$$Q2 - 3b - 3ia$$

Q3 5 + 3i Realising the denominator.

$$\mathbf{Q4} \stackrel{-7-24i}{= 625}$$

Q6 (i)
$$(5a+b) + i(5b-a)$$
 (ii) $\frac{3a+4b}{25} + i(\frac{3b-4a}{25})$

Quadratic Equations

(i)
$$\pm 2\sqrt{3}i$$
 (ii) $1 \pm 2i$ (iii) $1 \pm \sqrt{2}i$ (iv) $\frac{3i \pm \sqrt{3}i}{2}$

If the coefficients of a quadratic equation are real, then the roots form a conjugate pair.

QQ (a)
$$\frac{-1\pm\sqrt{3}}{2}$$
 (b) $\frac{i}{2}$, $-2+\frac{i}{2}$.

The Square Roots of Complex Numbers

1.
$$a^2 - b^2 + 2iab$$
 2. $\pm (3 - 2i)$ **3.** $\pm \frac{1}{\sqrt{2}}(1 + i)$ **4.** $2 - 3i$, $-1 - i$.
5. $3 - 2i$, $-2 + i$. **6.** (i) $x = 1$, $y = -2$ or $x = -1$, $y = 2$. (ii) $2 - i$, $1 + i$

5.
$$3-2i$$
, $-2+i$. **6.** (i) $x=1$, $y=-2$ or $x=-1$, $y=2$. (ii) $2-i$, $1+i$

7. Let
$$\sqrt{a+ib} = x+iy$$
 where a,b,x and y are real.

Then
$$a + ib = x^2 - y^2 + 2ixy$$
.

Equating the real and imaginary parts,

$$a = x^2 - y^2$$
 and $b = 2xy$.

Now substitute into the identity
$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2$$

 $\therefore (x^2 + y^2)^2 = a^2 + b^2$.

Since x and y are real,
$$x^2 + y^2 \ge 0$$
.

Taking the square root then

$$x^2 + y^2 = \sqrt{a^2 + b^2}...(1)$$

$$x^2 - y^2 = a....(2)$$

$$(1)+(2): 2x^{2} = a + \sqrt{a^{2} + b^{2}}$$
$$x^{2} = \frac{1}{2}(a + \sqrt{a^{2} + b^{2}})$$

$$x^2 = \frac{1}{2}(a + \sqrt{a^2 + b^2})$$

Since
$$a^2 + b^2 \ge a^2$$
 then $\sqrt{a^2 + b^2} \ge a$ so RHS ≥ 0

$$\therefore x = \pm \frac{1}{2} \sqrt{a + \sqrt{a^2 + b^2}}.$$

For each of these values of x there corresponds a unique value of $y = \frac{b}{2x}$.

Thus a + ib has 2 square roots.