NEW SOUTH WALES

Higher School Certificate

Mathematics Extension 2

Exercise 54/67

by James Coroneos*

- 1. $P(x_1, y_1)$ is a point 'inside' the hyperbola $x^2/9 y^2/4 = 1$. By drawing a line through P parallel to the x-axis, show that $x_1^2/9 y_1^2/4 > 1$. On separate sketches, graph the solution sets of
 - (a) $4x^2 9y^2 \ge 36$, $9x^2 + 16y^2 \le 144$ (b) $4x^2 9y^2 \le 36$, $xy \le 24$.
- 2. (a) P is the point $(4\cos\theta, 3\sin\theta)$. Show clearly the positions of P and the angles θ when $\theta = \pi/3$ and $\theta = 3\pi/4$. What is the cartesian equation of the locus of P? On the sketch of the positions of P draw this locus.
 - (b) Q is the point $(4 \sec \phi, 3 \tan \phi)$. Show clearly the positions of Q and the angles ϕ when $\phi = \pi/3$ and $\phi = 3\pi/4$. What is the cartesian equation of the locus of Q? On the sketch of the positions of Q, draw this locus.
- **3.** For the hyperbola $3x^2 y^2 = 12$ find the eccentricity, the coordinates of the foci, the equations of the directrices and the asymptotes, and the length of the semi-latus rectum. Sketch the hyperbola.
 - (a) Find the angle between the asymptotes and the common points of these asymptotes and the auxiliary circle.
 - (b) Give a parametric representation for the point P on the curve, and taking 4 points on it (one in each quadrant of the plane) give an approximate value of the parameter corresponding to each point.
 - (c) What would the coefficient of y^2 need to be for the hyperbola to be rectangular? Determine the eccentricity then.

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by \mathcal{AMS} -TeX.

http://www.geocities.com/coroneosonline

- 4. (i) Find the equation of the hyperbola with the same foci as the ellipse $3x^2 + 4y^2 = 192$, and whose eccentricity is the reciprocal of that of the ellipse. Find the equations of the asymptotes of the hyperbola.
 - (ii) For the hyperbola $H: x^2/9 y^2/4 = 1$, determine the eccentricity e and the coordinates of the foci. Find the equation of the ellipse E which has the same foci as H, but with eccentricity 1/e. What is the ratio of the lengths of the latus recta of H and E?
- 5. (i) Find the equation of the tangent and normal to the hyperbola $x^2 2y^2 = 1$ at the point (-3, -2) on it.
 - (ii) The tangent at the point (2,1) on the hyperbola $9x^2 4y^2 = 32$ meets the asymptotes in A, B. Find the length of AB.
 - (iii) The normal at the point P(5/4, 3/4) on the rectangular hyperbola $x^2 y^2 = 1$ cuts the transverse, conjugate axes at G, g respectively. Show that PG = Pg = PO, where O is the origin.
- **6.** (i) Show that the line x 2y + 1 = 0 is a tangent to the hyperbola $x^2 6y^2 = 3$ and find the point of contact.
 - (ii) Prove that 3x + 4y = 10 is a normal to the hyperbola $2x^2 3y^2 = 5$ and find the foot of the normal.
- 7. (i) Find the equations of the tangents to the hyperbola $2x^2 3y^2 = 6$ which are parallel to the line x + y = 7.
 - (ii) Show that the condition for the line lx + my + n = 0 to touch the hyperbola $H: x^2/a^2 y^2/b^2 = 1$ is that $n^2 = a^2l^2 b^2m^2$. Hence find the equations of the tangents to $x^2 4y^2 = 12$ which are perpendicular to the line 2x + 2y = 9.
- 8. Find the condition for the line y = mx + c to touch the hyperbola $x^2 2y^2 = 4$ and the circle $x^2 + y^2 = 1$. Hence determine the equations of the 4 common tangents to the 2 curves.

