NEW SOUTH WALES

Higher School Certificate

Tathematics Extension

Exercise 50/67

by James Coroneos*

- 1. Determine which of the following equations represent real circles, and find the centre and radius of those that do.
 - (a) $x^2 + y^2 = 12$ (b) $x^2 + y^2 + 1 = 0$ (c) $x^2 + (y 3)^2 = 16$
 - (d) $x^2 + y^2 + 4x 2y 11 = 0$ (e) $x^2 + y^2 + 6x + 4y + 13 = 0$ (f) $x^2 + y^2 5x = 0$ (g) $8x^2 + 8y^2 12x + 20y 1 = 0$
- 2. Find the equation of the circle with centre
 - (a) the origin O, radius 10 units (b) (-7,4) radius $3\frac{1}{2}$ units
 - (c) O to pass through (-3, -4) (d) (-3, -4) to pass through (2, -6)
 - (e) (3,5) touching the y-axis (f) (6,-1) touching the line 3x-4y=12
- **3.** Find the equation of the circle
 - (a) with the points (-1, -7) and (3, -2) as the ends of a diameter;
 - (b) through the three points (2,1), (-3,-4), (-6,5);
 - (c) through (2,0) and (1,7), with centre on the line 3x + y = 19;
 - (d) through the points (-3, -1), (4, -2) with radius 5 units;
 - (e) with centre on x + y = 1 and touching the x-axis at (3,0);
 - (f) touching the coordinate axes and passing through (-6,3).
- (i) Show that the point A(-1,3) lies on the circle $x^2 + y^2 2x 4y = 0$, 4. and find the coordinates of the other end of the diameter through A.
 - (ii) Find the points of intersection of the line x + y = 4 and the circle $x^2 + y^2 + 4x - 2y - 20 = 0.$

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by AMS-TeX.

http://www.geocities.com/coroneosonline

- **5.** The circles $x^2 + y^2 + 2x 7 = 0$, $x^2 + y^2 + 4x 2y 5 = 0$ intersect at the points A, B. Find the
 - (a) equation of the circle through A, B and also the point (4, 1);
 - (b) equation of the chord AB and the coordinates of A, B.
- **6.** The line 3x 4y = 10 cuts the circle $x^2 + y^2 = 16$ at P, Q. Find the
 - (a) length of the chord PQ (b) coordinates of the midpoint of PQ
 - (c) equation of the circle on PQ as diameter.
- (i) Find the length of the chord intercepted on the line x + y = 1 by the 7. circle $x^2 + y^2 - 4x + 6y + 2 = 0$ (ii) Show that the circles $x^2 + y^2 + 4x - 8y = 29, x^2 + y^2 - 2x = 3$ touch
 - one another.
- 8. Prove that the circles $x^2 + y^2 6x + 8y + 9 = 0$, $x^2 + y^2 = 1$ touch externally, and find the coordinates of P, the point of contact. The circle $x^2 + y^2 = 1$ and a circle of radius $3\frac{1}{2}$ units touch internally at P; find the equation of this circle.
- **9.** O, A, B are the points (0,0), (5,2), (7,4) respectively. The circles with diameters OA, OB intersect at O, P. Find the coordinates of P and show that the points A, B, P are collinear.
- **10.** The line $x\cos\alpha + y\sin\alpha = p$ (p > 0) intersects the circle $x^2 + y^2 = a^2$ at A, B. Find the length of AB, the coordinates of the midpoint of AB and the equation of the circle on AB as diameter.
- **11.** The circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts the
 - (i) x-axis at P, Q and the y-axis at R, S. Prove analytically that OP.OQ =OR.OS, where O is the origin;
 - (ii) parabola $x = at^2, y = 2at$ at the points A, B, C, D with parameters t_1, t_2, t_3, t_4 . Show that $t_1 + t_2 + t_3 + t_4 = 0$. Hence deduce that the centroid (mean centre) of these points lies on the axis of the parabola and that the chords AB, CD are equally inclined to the axis.
- **12.** (i) If the line y = mx + c cuts off a chord of length 2b on the circle $x^{2} + y^{2} = a^{2}$, show that $c^{2} = (1 + m^{2})(a^{2} - b^{2})$
 - (ii) Write down the equation of the common chord of the circles $x^2 + y^2 y^2 + y^2 y^2$ ax = 0, $x^2 + y^2 - by = 0$, and show that the circle with this chord as diameter has equation $(a^{2} + b^{2})(x^{2} + y^{2}) - ab(bx + ay) = 0$

- 13. Find the equation of the chord joining the points P, Q with parameters t_1, t_2 on the parabola $x^2 = 4ay$, and determine the condition for PQ to pass through the focus. Write down the equation of the circle on diameter PQ. If this circle cuts the x-axis in A, B show that OA.OB is independent of t_1, t_2 (O is the origin).
- 14. (i) Find the centre and radius of the circles whose parametric equations are (a) $x = 7\cos\theta$, $y = 7\sin\theta$ (b) $x = 5 + 3\cos\theta$, $y = -1 + 3\sin\theta$
 - (ii) A is the point (a,0) and P is a variable point on the circle $x^2+y^2=a^2$. Find the locus of the midpoint of AP.
- **15.** Show that any point on the circumference of the circle $x^2 + y^2 = a^2$ may be represented by the coordinates $(a\cos\alpha, a\sin\alpha)$. If A and B are two points on the circle for which α has the values p,q respectively, show that the equation of the chord PQ is $x(\sin p \sin q) y(\cos p \cos q) = a\sin(p-q)$. If this line passes through a point D whose coordinates are (0,b) prove that $\cos\frac{1}{2}(p-q):\sin\frac{1}{2}(p+q)=b:a$.

