

2011 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time- 5 minutes
- Working Time 2 hours
- o Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- o Begin each question in a new booklet.

Total marks (84)

- o Attempt Questions 1-7
- o All questions are of equal value

Total Marks – 84 Attempt Questions 1-7 All Questions are of equal value

QUESTION 1

(12 MARKS)

Begin a NEW booklet.

Marks

a) Calculate
$$\lim_{x\to 0} \frac{\tan 3x}{2x}$$
.

1

b) Solve
$$\frac{x}{2x-1} \ge 3$$
.

3

c) If
$$\alpha$$
, β , γ are the roots of the equation $4x^3 - 6x^2 - 3x + 8 = 0$, find the value of

(i)
$$\alpha\beta + \alpha\gamma + \beta\gamma$$

1

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

2

d) If
$$\log_5 10 = 2.48$$
 find the exact value of $\log_5 4$.

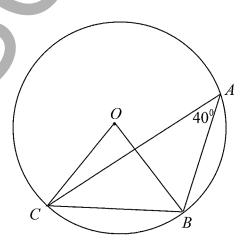
2

e) Use the substitution
$$u = x^2 - 3$$
 to evaluate $\int_2^6 \frac{x}{\sqrt{x^2 - 3}} dx$.

a) (i) Prove that $\frac{1+\cos 2\theta}{\sin 2\theta} = \cot \theta$.

2

(ii) Hence calculate the exact value of $\cot \frac{\pi}{12}$.


2

b) A polynomial is given by $P(x) = x^3 + ax^2 + bx + 8$. Determine the values of a and b if (x+4) is a factor of P(x) and 18 is the remainder when P(x) is divided by (x+1). 3

c) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{6}} \frac{dx}{6+3x^2}$

3

d) In the diagram below A, B and C are points on the circumference of a circle centre O. If $\angle CAB = 40^{\circ}$, find the size of $\angle OBC$ giving reasons for your answer.

Marks

Use one application of Newton's method to find a second a) approximation to the root of the equation $3\sin x - 2x = 0$, by taking 1.56 as your first approximation.

3

Write your answer correct to 2 decimal places.

Find the term independent of x in the expansion of b)


3

$$\left(x^2-\frac{1}{x^3}\right)^{10}.$$

Show that the function $f(x) = \frac{e^x}{4 - e^x}$ is monotonically increasing over c)

2

The graph of $g(x) = x^2 + 4x - 5$ is shown in the diagram. d)

(i) Sketch the graph of the inverse function of $g(x) = x^2 + 4x - 5$,

1

for
$$x \ge -2$$
.

the domain of x.

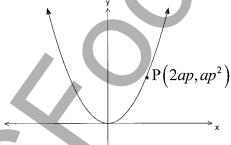
(ii) State the domain of the inverse function $g^{-1}(x)$.

1

(iii) Find an expression for $y = g^{-1}(x)$ in terms of x.

Find $\int \sin \theta \cos^2 \theta \ d\theta$ by using the substitution $u = \cos \theta$. a)

Evaluate $\sin \left[\tan^{-1} \left(-\sqrt{3} \right) \right]$. b)



A spherical balloon is inflated at a constant rate of $12 \cdot 6 \,\mathrm{cm}^3 / \mathrm{s}$. c) At what rate is the surface area increasing when the radius of the balloon is 12 cm?

 $SA = 4\pi r^2 \text{ and } V = \frac{4}{3}\pi r^3.$

 $P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$ as shown in the d) diagram drawn below.

The equation of the normal to the curve at P is $x + py = 2ap + ap^3$. DO NOT prove this.

(i) Find the co-ordinates of the point Q where the normal at P meets the y-axis.

1

(ii) Show that the co-ordinates of the point R, which divides the interval PQ externally in the ratio 1:2 are given by $(4ap, ap^2 - 2a)$

2

(iii) Find the Cartesian equation of the locus of R.

QUESTION 5

(12 MARKS)

Begin a NEW booklet.

Marks

2

a) Consider the function $y = 4 \sin^{-1} \left(\frac{x}{3} \right)$

where $x = \sqrt{5}$.

(i) State the domain and range of the function.

- 1
- (ii) Sketch the graph of the function showing all essential features.

(iii) Calculate the gradient of the tangent to the curve at the point

2

- b) The area bounded by the curve $y = \sin 2x$, the x-axis and the line $x = \frac{\pi}{4}$ is rotated about the x-axis.
 - Calculate the exact volume of the solid of revolution.
- c) The rate of growth of bacteria in a culture is given by $\frac{dN}{dt} = k(N-800)$, where N is the number of bacteria and t is time, in seconds.
 - (i) Show that $N = 800 + Ae^{kt}$ is a solution of this equation.

- 1
- (ii) Initially there are 1 000 bacteria and five seconds later there are 1 700 bacteria present in the culture. Calculate the number of bacteria present after ten seconds.
- 3

a) (i) Express $\sqrt{3}\sin\theta - \cos\theta$ in the form $R\sin(\theta - \alpha)$ where R is positive and α is acute.

2

(ii) Hence solve $\sqrt{3} \sin \theta - \cos \theta = -1$ for $0 \le \theta \le 2\pi$.

2

- b) Write the binomial expansion of $(3a-2b)^4$ in simplified form.
- 2

2

Use the table of standard integrals to show that $\int_{6}^{10} \frac{dx}{\sqrt{x^2 - 36}} = \log_e 3.$

- d) Use the principle of Mathematical Induction to prove that for all positive integers
 - $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}.$

QUESTION 7

(12 MARKS)

Begin a NEW booklet.

Marks

a) The acceleration of a particle P is given by $\ddot{x} = 4x(x^2 - 1)$,

3

where x is the displacement of the particle from the origin, in metres, after t seconds. Initially the particle is at the origin, moving to the right with a velocity of $\sqrt{2}$ m/s.

Prove that the velocity of the particle is $v = -\sqrt{2}(x^2 - 1)$.

b) Consider the expansion of $\left(x + \frac{3}{x^2}\right)^8$ with the general term T_{k+1} .

(i) Show that
$$\frac{T_{k+1}}{T_k} = \frac{9-k}{k} \times \frac{3}{x^3}$$

3

(ii) Hence calculate the greatest co-efficient in the expansion.

2

- c) A particle is moving in simple harmonic motion about a fixed point, with a velocity measured in metres/second, given by $v^2 = 21 + 4x x^2$.
 - (i) Between what two points is the particle oscillating?

1

(ii) What is the centre of the motion?

1

(iii) Write the amplitude of the motion.

1

(iv) Calculate the particle's maximum speed.