

Gosford High School

HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time 5 minutes.
- o Working Time 2 hours.
- Write using a blue or black pen.
- o Board Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question in a new booklet

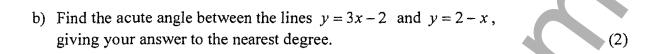
Total marks (84)

- Attempt Questions 1-7.
- All questions are of equal value.

Question 1.

(Begin a new booklet)

a) Find the value of $\lim_{x \to 0} \frac{\sin 3x}{2x}$ (1)



- c) Solve $\frac{(x+1)}{x} > 0$. (2)
- d) Find the number of ways in which 3 boys and 3 girls can be arranged in a straight line so that the tallest boy and tallest girl occupy the two middle positions. (2)
- e) Find the value of k such that (x-2) is a factor of $P(x) = x^3 + 2x + k$ (2)
- f) Evaluate $\int_{0}^{\pi} \sin^2 x \, dx$ (3)

Question 2.

(Begin a new booklet)

a) The interval AB is divided externally in the ratio 1:4. If A and B are the points (1,3) and (6,-2) respectively, find the coordinates of the point of division.

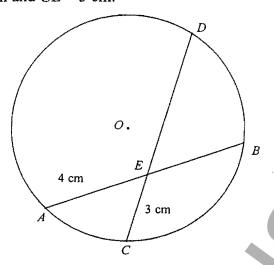
b) Given that a root of $y = x + \ln x - 2$ lies close to x = 1.5, use Newton's method once to find an improved value of that root.

- c) Using the substitution $u = x^2 2$ or otherwise, find $\int \frac{x}{\sqrt{x^2 2}} dx$. (2)
- d) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. The equation of the tangents at P and Q respectively are $y = px - ap^2$ and $y = qx - aq^2$.
 - (i) The tangents at P and Q meet at the point R. Show that the coordinates of R are (a(p+q), apq). (2)
 - (ii) The equation of the chord PQ is $y = \frac{p+q}{2}x apq$ (Do NOT show this.) If the chord PQ passes through (0, a), show that pq = -1.
 - (iii) Find the equation of the locus of R if the chord PQ passes through (0, a) (2)

Question 3.

(Begin a new booklet)

a) In the circle centred at O, the chords AB and CD intersect at E. The length of AB is x cm and of CD is y cm. AE = 4 cm and CE = 3 cm.



Show that
$$4x = 3y + 7$$

(2)

- b) Consider the function $f(x) = \frac{3x}{x^2 1}$
 - i. Show that the function is odd. (1)
 - ii. Show that the function is decreasing for all values of x. (1)
 - iii. Sketch the graph of the function showing clearly the equations of any asymptotes (2)
- c) If $\tan A$ and $\tan B$ are the roots of the quadratic equation $3x^2 - 5x - 1 = 0$, find the value of $\tan(A + B)$.
- d) Solve $\cos 2A = \cos A$ where $0 \le A \le 2\pi$ (2)
- e) Write down the general solutions of $\tan(x \frac{\pi}{3}) = -1$ (2)

Question 4.

(Begin a new booklet)

- a) At time t hours after an oil spill occurs, a circular oil slick has a radius r km, where $r = \sqrt{t+1} 1$. Find the rate at which the area of the slick is increasing when its radius is 1 km, giving your answer correct to 2 decimal places.
- (3)

- b) Use Mathematical Induction to show that $3^n 2n 1$ is divisible by 4 for all positive integers $n \ge 2$
- (4)
- c) At time t years after observation begins, the number N of birds in a colony is given by $N = 100 + 400e^{-0.1t}$
 - i. Sketch the graph of N as a function of t showing clearly the initial population size and the limiting population size.
- (2)
- ii. Find the time taken for the population size to fall to half its initial value, giving the answer correct to the nearest year
- (2)
- d) Given $f(x) = \log_e \left(\sqrt{9 x^2} \right)$, state the domain of f(x). (1)

Question 5.

(Begin a new booklet)

a) Use the substitution $t = \tan \frac{x}{2}$ to show that $\csc x + \cot x = \cot \frac{x}{2}$ (2)

Hence evaluate
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (\csc x + \cot x) dx$$
 (3)

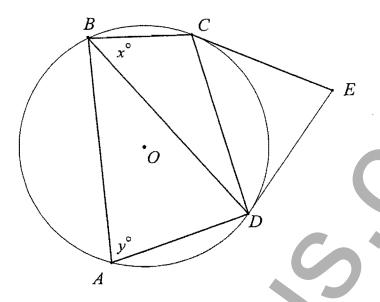
- b) Find the term independent of x in the expansion of $\left(x^2 \frac{2}{x}\right)^9$ (3)
- c) Show, using sketches on separate sets of axes:
 - (i) the area enclosed between $y = \sin^{-1} x$, the x axis, and the line x = 1 (1)
 - (ii) the area enclosed between $y = \sin x$, the x axis, and the line $x = \frac{\pi}{2}$. (1)
 - (ii) Using the graphs, explain why

$$\int_0^1 \sin^{-1} x \, dx = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \sin x \, dx. \tag{2}$$

Question 6.

(Begin a new booklet)

a) The circle ABCD has centre O. Tangents are drawn from an external point E to contact the circle at C and D. $\angle CBD = x^{\circ}$ and $\angle BAD = y^{\circ}$.



i. Copy the diagram into your examination booklet

ii. Show that
$$\angle CED = (180 - 2x)^{\circ}$$
. (2)

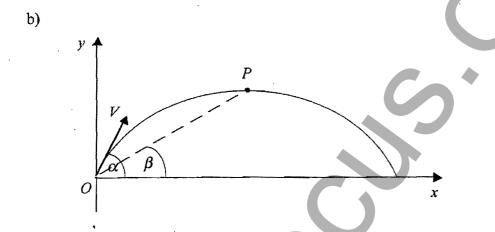
iii. Show that
$$\angle BDC = (y-x)^{\circ}$$
. (2)

- b) A particle moving in a straight line is performing Simple Harmonic Motion. At the time t seconds it has displacement x metres from a fixed point O on the line, where $x = 4\cos^2 t 1$
 - i. Show that its acceleration is given by $\ddot{x} = -4(x-1)$ (2)
 - ii. Sketch the graph of x as a function of t for $0 \le t \le \pi$, clearly showing the times when the particle passes through O. (2)
 - iii. For $0 \le t \le \pi$, find the time when the velocity of the particle is increasing most rapidly, and find this rate of increase in the velocity. (2)
- c) Differentiate $2x^2 \cos^{-1} 2x$. (2)

Question 7.

(Begin a new booklet)

- a) The polynomial $P(x) = 2x^3 5x^2 3x + 1$ has zeros α , β and γ . Find the values of
 - (i) $3\alpha + 3\beta + 3\gamma 4\alpha\beta\gamma$ (2)
 - (ii) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$
 - (iii) $\alpha^2 + \beta^2 + \gamma^2 \tag{1}$



A particle is projected from a point O with speed $V \, \mathrm{ms}^{-1}$ at an angle α above the horizontal, where $0 < \alpha < \frac{\pi}{2}$. It moves in a vertical plane subject to gravity where the acceleration due to gravity is $10 \, \mathrm{ms}^{-2}$. At time t seconds it has horizontal and vertical displacements x metres and y metres respectively from O. At point P where it attains its greatest height the angle of elevation of the particle from O is β radians.

- (i) Use integration to show that $x = Vt \cos \alpha$ and $y = Vt \sin \alpha 5t^2$. (2)
- (ii) Show that $\tan \beta = \frac{1}{2} \tan \alpha$. (3)
- (iii) If the particle has greatest height 80 m above O at a horizontal distance 120 m from O, find the exact values of α and V.