

Catholic Schools Trial Examinations 2005 Mathematics Extension 1

sin2x Find the value of 05 lim

CT

The polynomial P(x) is given by $P(x) = x^3 + ax + b$ for some real numbers a and b. 05 1b 2 is a zero of P(x). When P(x) is divided by (x + 1) the remainder is -15. CT

> (i) Write down two equations in a and b.

2

2

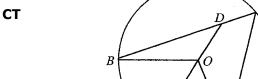
(ii) Hence find the values of a and b. 1

1

2

- Find the exact values of the gradients of the tangent to the curve $y = e^x$ at 05 **1c** (i) the points where x = 0 and x = 1. CT
 - Find the acute angle between these tangent correct to the nearest degree. (ii)

1d 05



In the diagram, A, B and C are points on a circle with centre O. D is a point on AB such that ADOC is a cyclic quadrilateral DO produced meets the circle again at E.

- Copy the diagram. (i)
- (ii) Give a reason why $\angle CAD = \angle COE$.
- (iii) Show that DOE bisects \angle COB.
- 05 Evaluate log₂7 correct to two decimal places.

3 2

1

Show that $\frac{1}{1-\tan x}$ + 2b (i) = tan2x05 1 + tan *x* CT

2

Evaluate $\frac{1}{1-\tan\frac{\pi}{6}} + \frac{1}{1+\tan\frac{\pi}{6}}$ (ii)

1

05 $A(x, 10 \text{ and } B(x^2, 6) \text{ are two fixed points for some real number } x.$

The point P(5, 4) divides the interval AB externally in the ratio 3:1. CT

> Show that $3x^2 - x = 10$ (i)

1

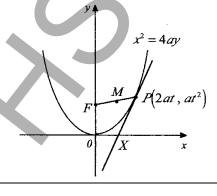
Find any values of x. (ii)

2

05 2d

CT

CT



 $P(2at, at^2)$ is a point on the parabola $x^2 = 4ay$ with focus F. The tangent to the parabola at P cuts the x axis at X. M is the midpoint of PF.

- Show that the tangent to the parabola (i) at P has equation $tx - y - at^2 = 0$.
- Show that MX is parallel to the y axis. (ii)

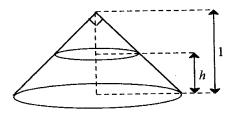
2

2

05	3a	Consider the function $f(x) = 1 + \ln x$.	
CT		(i) Show that the function $f(x)$ is increasing and the curve $y = f(x)$ is concave	2
		down for all values of x in the domain of the function.	
		(ii) Find the equation of the tangent to the curve $y = f(x)$ at the point on the	2
		curve where $x = 1$.	
		(iii) Find the equation of the inverse function $f^{-1}(x)$.	1
		(iv) On the same diagram sketch the graph of the curves $y = f(x)$ and $y = f^{-1}(x)$.	3
		Show clearly the coordinates of any points of intersection of the two curves	
		and any intercepts made on the coordinate axes.	
05	3b	(i) Show that $\frac{d}{dx}(x\sqrt{1-x^2} + \sin^{-1}x) = 2\sqrt{1-x^2}$.	2
СТ		<u>1</u>	
		(ii) Evaluate $\int_{1}^{2} \sqrt{1-x^2} dx$, giving the answer in simplest exact form.	2
		0	
05	4a	The equation $x^3 - 3x - 3 = 0$ has exactly one real root a .	
СТ		(i) Show that $2 < \alpha < 3$.	2
		(ii) Starting with an initial approximation $\alpha = 2$, use one application of Newton's	2
		method and find a further approximation of $lpha$ correct to one decimal place.	
05	4b	$\frac{\pi}{3}$	
СТ		Use the substitution $u = \sin^2 x$ to evaluate $\int \frac{\sin 2x}{1-\sin^2 x} dx$, giving the answer in	4
		$\frac{\pi}{4}$	
		simplest form.	
05	4c	A particle is moving in a horizontal straight line. At time t seconds, the displacement	
СТ		of the particle from a fixed point O on the line is x metres, its velocity is v ms ⁻¹ , and	
		its acceleration $a \text{ ms}^{-2}$ is given by $a = 8x - 2x^3$. When the particle is 2m to the right	
		of O, it is observed to be traveling right with a speed of 6ms ⁻¹ .	
		(i) Show that $v^2 = 20 + 8x^2 - x^4$.	2
		(ii) Find the set of possible values of x.	2
05	5a	A bag contains nine balls labelled 1, 2, 3,, 9 but otherwise identical. Three balls	
СТ	-	are chosen at random from the bag. Find the probability that exactly two even	
		numbered balls are chosen	
		(i) if the balls are selected without replacement.	2
		(ii) if each ball is replaced before the next is selected.	2

5b 05

CT



A closed, right, hollow cone has a height of 1 metre and the semi-vertical angle 45°. The cone stands with its base on a horizontal surface. Water is poured into the cone through a hole in its apex at a constant rate of 0.1 m³ per minute.

Show that when the depth of water in the cone is h metres (0 < h < 1) the (i) volume of water V m³ in the cone is given by $V = \frac{\pi}{3}(h^3 - 3h^2 + 3h)$.

2

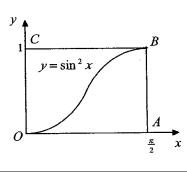
(ii) Find the rate at which the depth of water in the cone is increasing when h = 0.5.

4

2

05 **5c**

CT



The rectangle OABC has vertices O(0, 0), $A(\frac{\pi}{2}, 0)$, $B(\frac{\pi}{2}, 1)$ and C(0, 1).

The curve $y = \sin^2 x$ is shown passing through the points O and B. Show that this curve divides the rectangle OABC into regions of equal area.

A particle is performing Simple Harmonic Motion about a fixed point O on a straight 05 6a CT line. At time t seconds it has displacement x metres from O given

by $x = \cos 2t - \sin 2t$.

Express x in the form $R\cos(2t + \alpha)$ for some R > 0 and $0 < \alpha < \frac{\pi}{2}$. (i) 2

2 Find the amplitude and the period of the motion. (ii)

2 (iii) Determine whether the particle is initially moving toward O or away from O and whether it is initially speeding up or slowing down.

2 (iv) Find the time at which the particle first returns to its starting point.

Use Mathematical Induction to show that for all positive integers $n \ge 1$. 05 6b 4

 $\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} = \frac{2n}{n+1}.$ **CT**

A particle is projected from a point O with velocity $V \text{ ms}^{-1}$ at an angle θ above the 05 **7**a CT horizontal. At time t seconds it has horizontal and vertical displacements x metres and y metres respective from O. The acceleration due to gravity is g ms⁻².

> Write down expressions for x and y in terms of V, θ and t. (i) 2

> Show that $y = x \tan \theta - \frac{gx^2}{2V^2} (1 + \tan 2\theta)$ 2 (ii)

05 7b A particle is projected from O with velocity $60 \,\mathrm{ms^{-1}}$ at an angle α above the

horizontal T seconds later, another particle is projected from O with velocity 60ms^{-1} at an angle β above the horizontal, where $\beta < \alpha$. The two particles collide 240 metres horizontally from O and at a height of 80 metres above O.

Taking $g = 10 \text{ ms}^{-2}$ and using results from question **7a**,

(i) Show that $\tan \alpha = 2$ and $\tan \beta = 1$

CT

2

(ii) Find the value of T in simplest exact form.

2

7c The real number x is a solution of the equation $x^2 - x - 1 = 0$.

.

Use the Binomial Theorem to show that the sum S of the series

 $1 + x + x^2 + ... + x^{2n-1}$ (n = 1, 2, 3, ...) is given by $S = \sum_{r=1}^{n} {}^{n}C_r x^{r+1}$.

A 1a. $\frac{2}{5}$ 1b.(i) 8 + 2a + b = 0 and -1 - a + b = -15 (ii) a = 2, b = -12 1c.(i) x = 0, grad is 1;

x = 1 grad is e (ii) 25° **1d.**(iii) ext \angle equals opp int \angle in cyc. quad. **2a.** 2.81 **2b.**(ii) $\sqrt{3}$

2c.(ii) $x = -\frac{5}{3}$, 2 **3a.(ii)** y = x **(iii)** $f^{-1}(x) = e^{x-1}$ **3b.(ii)** $\frac{\sqrt{3}}{8} + \frac{\pi}{12}$ **4a.(ii)** 2.1 **4b.** ln2 **4c.(ii)**

 $-\sqrt{10} \le x \le \sqrt{10}$ **5a.(i)** $\frac{3 \times 5 \times 4 \times 3}{9 \times 8 \times 7} = \frac{5}{14}$ (ii) $\frac{3 \times 5 \times 4^2}{9^3} = \frac{80}{243}$ **6a.(i)** $\sqrt{2} \cos(2t + \frac{\pi}{4})$ (ii) $a = \frac{\pi}{4}$

 $\sqrt{2}$ m and per = π sec (iii) initially 1m to right of O moving towards O and speeding up. **7a.(i)** $x = Vt\cos\theta$ and $y = Vt\sin\theta - \frac{1}{2}gt^2$ **7b.(ii)** $T = 4(\sqrt{5} - \sqrt{2})$