
Part A – Multiple-choice questions

Total marks (3)

Attempt Questions 1-3

Allow about 5 minutes for this part

$$(A) \ (NH_3)_3 N_{(aq)} \ \rightarrow \ 2N_{2 \ (g)} \ + \ 4H_{2 \ (g)}$$

$$(B) \quad NH_{4}NO_{2~(aq)} \quad \rightarrow \quad N_{2~(g)} \ + \ 2H_{2}O_{~(l)}$$

$$(C) \ \ \, (NH_3)_2NO_3 \,\,_{(aq)} \quad \to \quad N_{2 \,\,(g)} \,\, + \,\, 3H_2O \,\,_{(l)}$$

$$(D) \ NH_4NO_3 \ _{(aq)} \quad \rightarrow \quad 2N \ _{(g)} \ + \ 2H_2O \ _{(l)}$$

- Which of the following elements is found in all of the 'spheres' (biosphere, lithosphere, hydrosphere and atmosphere) and is a major component (> 10% by mass) in each of them?
 - (A) carbon
 - (B) hydrogen
 - (C) nitrogen
 - (D) oxygen
- 3 Covalently bonded compounds generally have melting points significantly lower than ionically bonded compounds. Which of the following statements explains this fact?
 - (A) The covalent bond requires less energy to break than the ionic bond.
 - (B) Covalent compounds are composed of non-metals bonded together. Non-metals have low melting points.
 - (C) When a covalent compound is melted, weak intermolecular forces are broken not bonds.
 - (D) Ionic compounds contain heavy metal ions which raise the melting point.

Part B Total marks (17) Attempt Questions 4 – 10 Allow about 30 minutes for this part

Question 4 (3 marks) Marks

- (a) Draw the Lewis electron dot structures for magnesium and chlorine atoms and clearly show how they react to form the Lewis electron dot structure of magnesium chloride.
- (b) Draw the Lewis electron dot structure for the sulfide ion.

1

2

Question 5 (2 marks)

A student carried out tests on four solid substances A, B, C, D and the results are shown below.

Substance	Melting point (°C)	Conductivity Conductivi in solid state in molten st	
А	730	none	good
В	232	good goo	
С	1900	none none	
D	185	none	none

State the *specific* type of bonding present in the solids *A*, *B*, *C* and *D*.

Question 6 (3 marks)

Complete the table below about mixtures. A completed example is given for your reference.

Mixture	Naturally occurring example	Separation method	Difference in physical property which enables separation
solids of different sizes	gravel	sieving	particle size
insoluble solid and liquid			
dissolved solid in liquid			
liquids			

Question 7 (2 marks)

Marks

Name the compounds listed below:

(0)	$M_{\sim}C1$	1
(a)	$MgCl_2$	$\overline{2}$

- (b) $NaHCO_3$
- (c) $Fe(OH)_2$
- (d) $Ba(H_2PO_4)_2$

Question 8 (2 marks)

The table below lists the melting points of six consecutive elements (UVWXYZ) located in Period 3 (Na to Ar) on the Periodic Table.

Element	U	٧	W	Х	Y	Z
m.p. (°C)	660	1410	44	119	-101	-189

(a) Which element is composed of monatomic molecules?

<u>1</u>

(b) Which element would be a semi-conductor?

<u>1</u>

(c) Which element is composed of diatomic molecules?

 $\frac{1}{2}$

(d) Which element would have a covalent network structure?

<u>1</u>

Question 9 (2 marks)

(a) Write the electronic configuration of a specie composed of: 12 neutrons, 12 protons and 10 electrons

1

(b) What is the name of the specie described in (a)?

- 1/2
- (c) Write the name of another specie with the same electronic configuration as in (a)
- $\frac{1}{2}$

Question 10 (3 marks)

The boiling of water and the electrolysis of water both require a specific amount of energy:

$$H_2O_{(l)} + 44 \text{ kJ} \rightarrow H_2O_{(g)}$$

$$H_2O_{\ (l)}\ +\ 285\ kJ \quad \ \to \quad \ H_{2\ (g)}\ +\ {}^{1\over 2}O_{2\ (g)}$$

- (a) Explain the reasons for low energy value for boiling and the high value for electrolysis.
- 2
- (b) Bauxite (aluminium oxide) is commercially electrolysed using carbon electrodes into aluminium and carbon dioxide.

aluminium oxide + carbon → aluminium + carbon dioxide

Translate this word equation into a balanced equation showing chemical formulas.

James Ruse Agricultural High School

2001

THE CHEMICAL EARTH MODULE TEST

STUDENT NUMBER	·
MARK	

ANSWER BOOKLET

All answers must be recorded in this booklet. Answers marked on the Test Paper will be ignored.

Part A

Total marks (3)

Attempt Questions 1 - 3

Allow about 5 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response completely.

Sample

$$2 + 4 = (A) 2$$

(D)
$$9$$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

2

(C) 8

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

(C) 8 (D) 9

correct

Question 1

$$^{\odot}$$

Question 2

Question 3

B

©

(C)

Part B
Total marks (17)
Attempt Questions 4 – 10
Allow about 30 minutes for this part

\sim	4.0	-
()11	estion	4

(a)

(b)

Question 5

A B C

Question 6

D

Mixture	Naturally occurring example	Separation method	Difference in physical property which enables separation
solids of different sizes	gravel	sieving	particle size
insoluble solid and liquid			
dissolved solid in liquid			
liquids			

Question 7
(a)
(b)
(c)
(d)
Question 8
(a)
(b)
(c)
(d)
Question 9
(a)
(b)
(c)
Question 10
(a)
(b)