© Oxercise 5

Extracts From

Taylors College COMPLEX NUMBERS Study Guide + ANSWERS

by Jacquie Hargreaves

De Moivre's Theorem

Let $z = r \operatorname{cis} \theta$. Then $|z^n| = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ and $\arg z^n = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ so $z^n = \underline{\hspace{1cm}}$. De Moivre's theorem states $(\operatorname{cis} \theta)^n = \operatorname{cis} \theta$. Proof: $(e^{i\theta})^n = e^{in\theta}$.

- **1.** Simplify (i) $(cis\theta)^2$ (ii) $(cis\frac{\pi}{5})^{10}$ (iii) $(cos\theta isin\theta)^{-1}$ (iv) $(1 + i\sqrt{3})^3(\sqrt{3} i)^4$
- (v) $z_1^5 + z_2^3$ where $z_1 = -\sqrt{2} + \sqrt{2}i$ and $z_2 = 1 \sqrt{3}i$
- **2.** (i) Express z = 1 + i in modulus-argument form.
- (ii) Find $(1+i)^4$. Express your answer in the form a+ib.
- (iii) Hence find $z^4 + \frac{1}{z^4}$.
- **3.** Find the square roots of $1 + i\sqrt{3}$
- 5. (ii) If $\omega = \frac{1+i\sqrt{3}}{2}$ calculate ω^{10} .

ANSWERS

De Moivre's Theorem

 $|z^n| = |z|^n = r^n$ and $\arg z^n = n \arg z = n\theta$ so $z^n = r^n \operatorname{cisn}\theta$

- 1. (i) $cis2\theta$ (ii) 1 (iii) $cis\theta$ (iv) $64(1+\sqrt{3})$ (v) 8-16i
- **2.** (i) $\sqrt{2} \operatorname{cis} \frac{\pi}{4}$ (ii) -4 (iii) $-4\frac{1}{4}$ **3.** $\pm \frac{1}{2}(\sqrt{6}+i\sqrt{2})$ **5.** (ii) $-\frac{1}{2}(1+i\sqrt{3})$