NEW SOUTH WALES

Higher School Certificate

Mathematics Extension

Exercise 49/67

by James Coroneos*

1. If ω is a complex cube root of unity, show that the other complex cube root is ω^2 and prove that $1 + \omega + \omega^2 = 0$. Show that **(a)** $(1 - 3\omega + \omega^2)(1 + \omega - 8\omega^2) = 36$ **(b)** $(7 + 9\omega^4 + 7\omega^{-1})^6 = 64$

(a)
$$(1 - 3\omega + \omega^2)(1 + \omega - 8\omega^2) = 36$$
 (b) $(7 + 9\omega^4 + 7\omega^{-1})^6 = 64$

- **2.** If $1, \omega, \omega^2$ are the 3 cube roots of unity, prove that

(a)
$$(1 + \omega^2)^3 = -1$$
 (b) $(1 + \omega)^5 = -\omega$ (c) $(\omega^2 + \omega)^{-20} = 1$ (d) $1 + \frac{1}{\omega} + \frac{1}{\omega^2} = 0$ (e) $\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = 1$ (f) $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} = \omega$.

3. If ω is a cube root of unity, show that

(a)
$$(1-\omega-\omega^2)(1-\omega+\omega^2)(1+\omega-\omega^2) = 8$$
 (b) $(1+2\omega+3\omega^2)(1+2\omega^2+3\omega) = 3$

(c)
$$(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^5) = 9$$
 (d) $(1+\omega)(1+2\omega)(1+3\omega)(1+5\omega) = 21$

- (i) Find the sum $1 + \omega + \omega^2 + \omega^3 + \cdots$ to n terms, considering the cases 4. n = 3k, n = 3k + 1, n = 3k + 2 where k is an integer.
 - (ii) Show that $(1-\omega+\omega^2)(1-\omega^2+\omega^4)(1-\omega^4+\omega^8)\cdots$ to 2n factors $= 2^{2n}$
 - (iii) Prove that $\frac{1}{x-1} + \frac{\omega}{x-\omega} + \frac{\omega^2}{x-\omega^2} = \frac{3}{x^3-1}$
- (i) If x = a + b, $y = a + b\omega$, $z = a + b\omega^2$, show that **5.**

(a)
$$x + y + z = 3a$$
 (b) $xyz = a^3 + b^3$ (c) $xy + yz + zx = 3a^2$

- (ii) If p = a + b, $q = a\omega + b\omega^2$, $r = a\omega^2 + b\omega$, prove that (a) $pqr = a^3 + b^3$ (b) $p^2 + q^2 + r^2 = 6ab$ (c) $p^3 + q^3 + r^3 = 3(a^3 + b^3)$

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by AMS-TeX.

http://www.geocities.com/coroneosonline

- **6.** (i) Show that $(a+b+c)(a+b\omega+c\omega^2)(a+b\omega^2+c\omega) = a^3+b^3+c^3-3abc$
 - (ii) Prove that $L = (1 + a\omega + a^2\omega^2)(1 + a\omega^2 + a^2\omega^4)$ is independent of ω , and hence show that $(1 + a + a^2)L = (1 a^3)^2$
- 7. Form the quadratic equation with root

(a)
$$3 + \omega$$
, $3 + \omega^2$ (b) $a + b\omega$, $a + b\omega^2$ (c) $a + b\omega + c\omega^2$, $a + b\omega^2 + c\omega$

8. Form the cubic equation with roots

(a)
$$-1, 1 + \omega, 1 + \omega^2$$
 (b) $p + q, p\omega + q, p\omega^2 + q$

- **9.** If $x = a + b, y = \omega a + \omega^2 b, z = \omega^2 a + \omega b$, show that x + y + z = 0 and xy + yz + zx = -3ab. Find the values of $x^2 + y^2 + z^2$ and $z^4 + y^4 + z^4$, and show that $2(x^4 + y^4 + z^4) = (x^2 + y^2 + z^2)^2$.
- 10. If $\omega^3 = 1, \omega \neq 1$, show that $\frac{1+\omega^n+\omega^{2n}}{3} = 1$ or 0, according to whether n is or is not a multiple of 3. If $c_0, c_1, c_2, \ldots, c_n$ are the coefficients in the expansion of $(1+x)^n$ in ascending powers of x, show by successive substitution of $1, \omega, \omega^2$ that $c_0 + c_3 + c_6 + \cdots = \frac{2^n (-1)^n}{3}$ or $\frac{2^n + 2(-1)^n}{3}$, according to the form of n, and state the rule which determines which of these two forms must be taken.
- 11. When n is a positive integer, we know that $(x^2+x+1)^n = p_0+p_1+p_2x^2+\cdots+p_{2n}x^{2n}$ where $p_0, p_1, p_2, \ldots, p_{2n}$ are certain constants. In this identity, put for x the values $1, \omega, \omega^2$ where ω is one of the complex cube roots of unity, and add the three equations thus obtained. Hence show that $p_0+p_3+p_6+p_9+\cdots=3^{n-1}$. State and prove a corresponding theorem regarding $p_0+p_5+p_{10}+\cdots$ in the identity $(x^4+x^3+x^2+x+1)^n=p_0+p_1x+p_2x^2+\cdots+p_{4n}x^{4n}$.
- 12. The equation $ax^4 + bx^3 + cx^2 + dx + e = 0$ has ω and ω^2 as two of its roots, ω being a complex cube root of unity. Prove that the other two roots are those of the quadratic equation $ax^2 + (b-a)x + e = 0$, and deduce, or prove otherwise, that c = a + d = b + e.

