

YEAR 11

PRELIMINARY EXAM 2005

EXTENSION 1 MATHEMATICS

Time allowed: 2 hours (plus 5 minutes reading time)

Directions to candidates

- Attempt all questions
- All questions are of equal value
- All necessary working should be shown in every question
- Board approved calculators may be used
- Start a new page for each question

Total marks

• 84 marks

Question 1 (12 marks)

Marks

(a) Find the acute angle between the lines y = 5x - 1 and 3y - 6x - 1 = 0. Give your answer to the nearest minute.

(b) Find the coordinates of the point P that divides the interval joining the points A(-5,6) and B(1,0) externally in the ratio 3:1.

(c) Find the equation of a line through the point of intersection of the lines 5x - y - 3 = 0 and 2x - y = 0 and perpendicular to the line $y = \frac{1}{2}x + 4$.

(d) Find the shortest distance between the parallel lines 3x - 2y + 1 = 0 and 3x - 2y + 3 = 0. Express your answer in surd form.

Question 2 (12 marks) Start a new page.

Marks

Show that the exact value of $\sin 75^{\circ}$ is $\frac{\sqrt{6} + \sqrt{2}}{4}$. (a)

Express $\sec x + \tan x$ in simplest form, in terms of t (where $t = \tan \frac{\theta}{2}$). (b)

The graph shows the curve $y = \cos 2x$, for $0^{\circ} \le x \le 360^{\circ}$. (c)

y $v = \cos 2x$ 180 0 270 360 90

2

Copy the diagram onto your page and sketch the curve $y = \sin x$ (i) on the same set of axes. State the number of solutions of the equation $\cos 2x = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

Hence, or otherwise, find the solutions of the equation (ii) $\cos 2x = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

3

Prove that (d)

3

Question 3 (12 marks) Start a new page.

Marks

- (a) Find the values of p, q and r so that $2x^2 5x + 7 = p(x-1)^2 + q(x-1) + r$.
- (b) If α and β are the roots of the equation $3x^2 15x + 7 = 0$, find the value of:
 - (i) $\alpha + \beta$
 - (ii) $\alpha\beta$
 - (iii) $\alpha^2 + \beta^2$
- (c) The equation $x^2 (1-2k)x + k + 3 = 0$ has consecutive roots. Find the value(s) of k.
- (d) Solve for x

$$\frac{2x+3}{x-2} \le 1.$$

Question 4 (12 marks) Start a new page.

Marks

- (a) If $f(x) = \sqrt{x^2 + 4}$
 - (i) Find the domain of f(x).
 - (ii) Find the range of f(x).
- (b) Consider the function $f(x) = \frac{x}{x^2 9}$.
 - (i) Determine whether the function is odd, even or neither.
 - (ii) Find the coordinates of any intercepts.
 - (iii) Find any vertical asymptotes.
 - (iv) Calculate $\lim_{x \to \infty} \frac{x}{x^2 9}$.
 - (v) Draw a neat sketch of the function, showing all essential features clearly. 2
- (c) (i) On the same axes, sketch the curves $y = x^2$ and y = |x|.
 - (ii) Hence, or otherwise, solve $x^2 < |x|$.

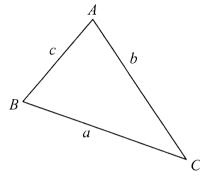
(a) (i) Express $3\cos x - \sqrt{3}\sin x$ in the form $R\cos(x+\alpha)$, where R and α are constants.

1

(ii) Hence find, correct to the nearest degree, the two angles between 0° and 360° that satisfy the equation $3\cos x - \sqrt{3}\sin x = -\sqrt{3}$.

2

(b)



In triangle ABC, it is given that 3a=4b.

(i) Use the sine rule to show that $\frac{\sin A}{\sin B} = \frac{4}{3}$.

2

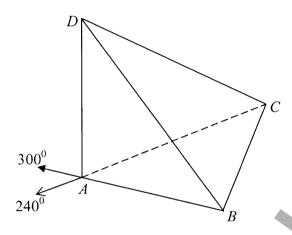
(ii) If angle A is double the size of angle B, find the value of $\cos B$.

2

Question 5 continued...

Marks

(c) The diagram below shows Barry standing at B on level ground, whilst Carmen is standing 2000 m away at C on the same level ground. They both take the bearing and elevation of a plane D at the same instant. Barry finds the bearing is 300° T and the angle of elevation 25° , whilst Carmen finds the bearing to be 240° T and the angle of elevation 17° .



(i) Copy the diagram onto your paper, showing all the information given.

1

(ii) Find the size of $\angle BAC$.

1

3

(iii) Show that if the height DA of the plane is h metres, then

$$h = \frac{2000}{\sqrt{\left(\cot^2 25^0 + \cot^2 17^0 - 2\cot 25^0 \cot 17^0 \cos 60^0\right)}}$$

Question 6 (12 marks) Start a new page.

Marks

(a) The graphs of y = x and $y = x^3$ intersect at x = -1. Find the size of the acute angle between these curves at x = -1.

3

(b) Find the equation of the tangent to the curve y = 2x(x+1) at the point (3,24).

3

(c) If $f(x) = 4x(3x^2 + 7)^5$, show that $f'(x) = 4(3x^2 + 7)^4(33x^2 + 7)$

3

(d) Find the value of p so that the gradient of the normal to the curve $12y = x^2 - px + 4$, at x = 1, is 2.

3

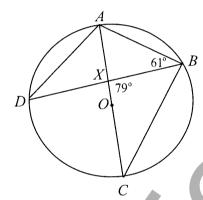
Question 7 (12 marks) Start a new page.

Marks

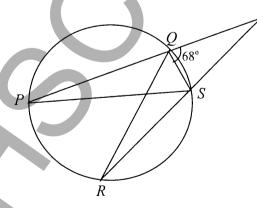
(a) Solve for $x: 3^{2x} + 26(3)^{x-1} = 3$

(b) If the line cx + dy + e = 0 touches the parabola $x^2 = 4ay$, show that $ac^2 = ed$.

(c) In the diagram, O is the centre of the circle and AC is a diameter. $\angle ABX = 61^{\circ}$ and $\angle BXC = 79^{\circ}$. Copy or trace this diagram and find the value of $\angle ADX$, giving reasons for your answer.



(d) In the diagram, MQ = MS and $\angle MQS = 68^{\circ}$. Copy or trace this diagram and prove that MP = MR.



END OF TEST