

**Question 1** (12 marks)**Marks**

a) Solve  $\frac{2}{x-3} < 5$  and graph your solution on the number line. 3

b) For the function  $y = 3 \sin^{-1} \frac{x}{2}$  2

(i) State the domain and range 2

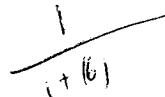
(ii) Sketch the graph of this function 1

c) Evaluate  $\int_0^3 \frac{dx}{x^2 + 9}$  2

d) Find the coefficient of the term in  $x^2$  in the expansion of  $(2x + \frac{1}{x^2})^{11}$  4

**Question 2** (12 marks) **Start a new page.**

a) Find the acute angle, to the nearest minute, between the lines  $y = 2x + 1$  and  $3x - y + 4 = 0$ . 3



b) Prove that  $\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$  3

c) For  $k = 0, 1, 2, 3, 4, \dots, n$  2

$P_k$  is defined as  $P_k = \binom{n}{k} a^k (1-a)^{n-k}$  where  $a$  is real and  $n > 0$ .

Prove that  $\sum_{k=0}^n P_k = 1$ .

d) A particle is moving in simple harmonic motion with acceleration 2

$$\frac{d^2x}{dt^2} = -4x \text{ m/s}^2.$$

The particle starts at the origin with a velocity of 3 m/s.

(i) Find the period of the motion. 2

(ii) Find the amplitude. 2

**Question 3 (12 marks) Start a new page.**

**Marks**

a) The polynomial  $P(x) = 2x^3 + 3x^2 - 36x - 37$  has a zero at  $x = -1$ .

(i) Find all the roots of  $P(x) = 0$ .

$$\begin{array}{r} 6x^2 + 6x - 36 \\ -5 \cancel{-} \\ \hline 5x^2 + x - 36 \end{array}$$

4

(ii) Apply Newton's Method once to find an approximate value, correct to 3 decimal places, for a root of  $P(x)$ , beginning with an initial approximation  $x_1 = -5$ .

4

b) Solve the equation  $2\ln(3x+1) - \ln(x+1) = \ln(7x+4)$ .

$$\cancel{2\ln(3x+1) - \ln(x+1) = \ln(7x+4)}$$

4

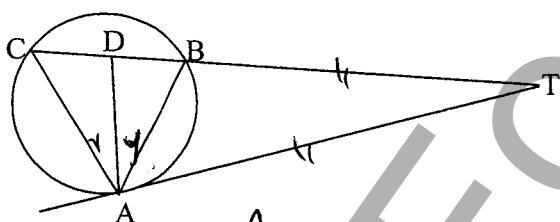
**Question 4 (12 marks) Start a new page.**

a) In what ratio does the point  $P(3,5)$  internally divide the interval  $A(-1,1)$  and  $B(6,8)$ ?

2

b)  $TA$  is a tangent.  $AD$  bisects  $\angle BAC$ . Prove that  $TA = TD$

4



$$\begin{aligned} & \text{Let } \angle BAC = 2\alpha \\ & \text{Then } \angle BDC = \alpha \text{ (angle in a semi-circle)} \\ & \text{In } \triangle ABD, \angle ABD = \angle ACD = \alpha \text{ (angle in a semi-circle)} \\ & \text{In } \triangle ACD, \angle ACD = \angle ABD = \alpha \text{ (angle in a semi-circle)} \\ & \text{Therefore, } \angle ABD = \angle ACD = \alpha \end{aligned}$$

c) (i) Find the largest domain of positive real numbers for which the curve  $y = x^2 - 6x + 11$  is a one-to-one function.

2

$$y = (x-3)^2 + 2$$

(ii) Hence, find its inverse function.

3

(iii) What is the domain of the inverse function?

1

**Question 5 (12 marks) Start a new page.**

**Marks**

a) In how many different ways can the letters of the word ~~COMMITTEE~~ be arranged so that the vowels (a,e,i,o,u) are always together? 2

b) Differentiate  $\log_e(\sin^3 x)$  writing your answer in the simplest form. 2

c) At any point on the curve  $y = f(x)$ , the gradient function is given

$$\text{by } \frac{dy}{dx} = \sin^2 x.$$

$$\text{Find the value of } f\left(\frac{3\pi}{4}\right) - f\left(\frac{\pi}{4}\right).$$

d) Use Mathematical Induction to show that  $5^n + 2(11^n)$  is a multiple of 3 for all positive integers  $n$ . 4

**Question 6 (12 marks) Start a new page.**

a) Use the substitution  $u = x^2$  to find  $\int_0^1 \frac{x}{\sqrt{1-x^4}} dx$ .

$$\frac{1}{2} \int \frac{du}{\sqrt{1-u^2}}$$

b) A particle moves in a straight line. Initially it is 2m to the right of  $O$ . At time  $t$  seconds its displacement is  $x$  metres from a fixed point  $O$  on the line, its acceleration is  $a$   $\text{ms}^{-2}$ , and its velocity is  $v$  m/s where  $v$  is

$$\text{given by } v = \frac{32}{x} - \frac{x}{2}.$$

(i) Find an expression for  $a$  in terms of  $x$ . 3

(ii) Show that  $t = \int \frac{2x}{64-x^2} dx$ , and hence show that  $x^2 = 64 - 60e^{-t}$ .

$$\frac{64 - r^2}{21}$$

$$\frac{4096 - 128r^2 + r^4}{8r^2}$$

$$4096r^{-2} - 128 + r^2$$

a) Prove that  ${}^nC_0 + \frac{1}{2} {}^nC_1 + \frac{1}{3} {}^nC_2 + \dots + \frac{1}{n+1} {}^nC_n = \frac{2^{n+1} - 1}{n+1}$ . 4

b) A particle is projected from a point  $O$  with speed  $50\text{ms}^{-1}$  at an angle of elevation  $\theta$  and moves freely under gravity where  $g = 10\text{ms}^{-2}$ .

(i) Write down expressions for the horizontal and vertical displacements of the particle at time  $t$  seconds, referred to axes  $Ox$  and  $Oy$ . 2

(ii) Hence show that the equation of the path of the projectile, given as a quadratic equation in  $\tan \theta$  is 3

$$x^2 \tan^2 \theta - 500x \tan \theta + (x^2 + 500y) = 0.$$

(iii) If the projectile passes through the point  $(X, X)$  and the roots of the equation of the path of the projectile are  $\tan \alpha$  and  $\tan \beta$ , find expressions in terms of  $X$  for  $\tan \alpha + \tan \beta$  and  $\tan \alpha \tan \beta$  3

and hence show that  $\alpha + \beta = \frac{3\pi}{4}$ .

**END OF PAPER**