| Name:    |  |  |
|----------|--|--|
|          |  |  |
| Teacher: |  |  |



# **YEAR 12 MATHEMATICS**

# **EXTENSION 1**

## **HALF YEARLY EXAMINATION 2005**

### **General Instructions**

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working must be shown in every question
- All questions are of equal value
- Start each question on a separate page

(c)

(a) Find the size of the acute angle between the lines

3

$$y = -x$$

$$\sqrt{3}y = x$$

2

(b) Solve the inequality  $\frac{2x+1}{x-1} > 3$ .

- A sector of angle 135° at the centre, is cut from a circular piece of cardboard of radius 8cm. The cut edges are brought together
- (d) For the given function  $f(x) = \frac{8}{4 + x^2}$ ,
  - (i) show that f(x) is an even function.

to form a cone. Find the circumference of the base of the cone.

2

(ii) evaluate  $\lim_{x\to\infty} \frac{8}{4+x^2}$ .

2

(iii) sketch the graph of y = f(x).

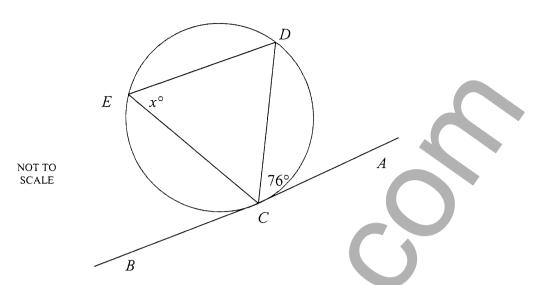
1

2

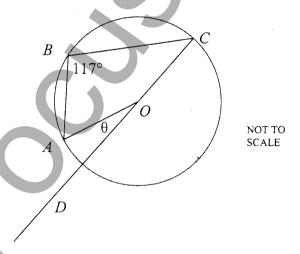
2

2

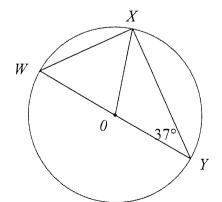
(a) In the diagram drawn below AB is a tangent to the circle and  $\angle DCA=76^{\circ}$ . Find the value of the pronumeral, giving reasons for your answer.



(b) Given that O is the centre of the circle and  $\angle ABC = 117^{\circ}$ , find the value of  $\theta$ , giving reasons for your answer.



(c) In the diagram drawn below, WY is a diameter of a circle, centre O. If  $\angle WYX = 37^{\circ}$ , find the size of  $\angle WXO$ . Give reasons for your answer.

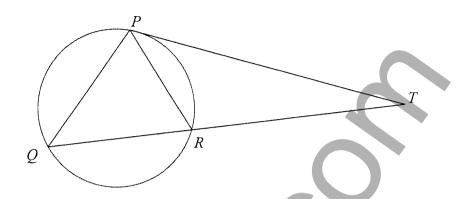


NOT TO SCALE

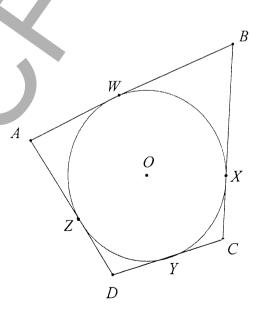
2

3

(d) PT is a tangent to the circle drawn below and QR is a secant, intersecting the circle at Q and at R. The line QR intersects PT at T.



- (i) Prove that the triangles *PRT* and *QPT* are similar.
- (ii) Hence prove  $PT^2 = QT \times RT$ .
- (e) A quadrilateral *ABCD* is constructed so that *AB*, *BC*, *CD* and *DA* are tangents to a circle. *W*, *X*, *Y* and *Z* are the points of contact of the tangents *AB*, *BC*, *CD* and *DA* respectively.
  - (i) Copy the diagram neatly.
  - (ii) Prove that AB+DC=AD+BC.



(a) Find the value of k for which (x+2) is a factor of the polynomial  $2x^3 + kx^2 - 18x - 8$ .

3

Hence, express the polynomial as a product of its linear factors.

(b) Sketch the graph of the polynomial

2

$$P(x) = x(x+1)^{2}(2x-1).$$

-

(c) If  $\alpha, \beta, \gamma$  are the roots of the equation  $x^3 + 2x^2 + 3x + 4 = 0$ ,

3

find the value of (i)  $\alpha + \beta + \gamma$ 

- (ii)  $\alpha\beta + \alpha\gamma + \beta\gamma$
- (iii)  $\alpha^2 + \beta^2 + \gamma^2$

4

(d) The polynomial  $x^3 - 6x^2 + 9x - k$  has a double root.

Show that there are two possible values of k.

Find the roots for each value of k.

(b) Differentiate  $\cos^4 x$ .

2

(a) Sketch the function  $y = 2\sin 3x$  for  $0 \le x \le 2\pi$ .



(c) Solve  $7 \sin \theta + \cos \theta = 5$  for  $0^{\circ} \le \theta \le 360^{\circ}$ .



Write your solution(s) to the nearest minute.



3

(d) Use the table of standard integrals to show that:

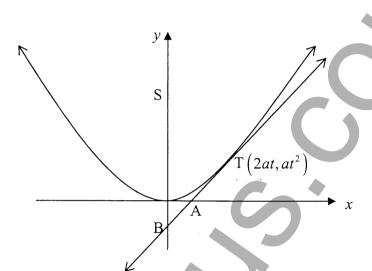
$$\int_{0}^{\frac{\pi}{9}} \sec 3x \tan 3x \, dx = \frac{1}{3}$$

(e) Prove that  $\frac{1}{\tan A + \cot B}$ 

(a)  $P(2ap, ap^2)$  and  $Q(2aq, aq^2)$ , are two points on the parabola  $x^2 = 4ay$ . If PQ is a focal chord, prove that pq = -1.

3

(b)  $T(2at, at^2)$  is a variable point on the parabola  $x^2 = 4ay$ .



(i) Show that the equation of the tangent, to the parabola at the point T, is  $y-tx+at^2=0$ . 1

(ii) If the tangent at T cuts the x-axis at A, and the y-axis at B, find the co-ordinates of A and B.

2

(iii) Show that the tangent at T makes equal angles with the y-axis and the line TS, where S is the focus of the parabola.

3

(iv) In what ratio does the point T, divide the interval AB?

(a) Solve  $\log_3 (9x-2) - 2\log_3 x = 2$ .

3

(b) Evaluate  $\int_{0}^{1} \frac{3x^2}{1+x^3} dx$ .

2

(c) Calculate the volume of the solid of revolution,

2

formed by rotating the curve  $y = e^x + e^{-x}$ , about the x-axis,

between x = -1 and x = 1.



- (d) Consider the function  $y = xe^{-x}$ .
  - (i) Determine the nature of any stationary point(s).

2

(ii) Find any point(s) of inflexion.

2

(iii) Sketch the function.

1

(a) Evaluate  $\int_{0}^{4} x \sqrt{16 - x^2} dx$ ,

3

using the substitution  $u = 16 - x^2$ , or otherwise.

(b) A solid of revolution is formed by rotating the area under the curve  $y = \tan x$  between x = 0 and  $x = \frac{\pi}{3}$ , around the x-axis. Find the exact volume of the solid.

3

(c) Show that  $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$ .

3

Hence, find the exact value of  $\int_{0}^{\frac{\pi}{2}} \sin^{2} \frac{\theta}{2} d\theta$ .

(d) For a certain function,  $f''(x) = -18\cos 3x$ .

3

Determine the equation of this function, given that there is a stationary point at the point  $\left(\frac{2\pi}{3},1\right)$ .

#### STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:  $\ln x = \log_e x$ , x > 0