Catholic Schools Trial Examinations 2004 Mathematics Extension 1

$A B C$ is a triangle in which $B C=A C . D$ is a point on the minor arc $A C$ of the circle passing through A, B and C. $A D$ is produced to E .
(i) Copy the diagram.
(ii) Give a reason why $\angle \mathrm{CDE}=\angle \mathrm{ABC}$. $\mathbf{1}$
(iii) Hence show that DC bisects $\angle \mathrm{BDE}$. 3

$\mathbf{0 4}$ 2d
$P\left(2 t, t^{2}\right)$ is a point on the parabola $x^{2}=4 y$. The tangent to the parabola at P and the line $y=-t x$ intersect at M.
(i) Show that the tangent to the
parabola at P has gradient t and equation $t x-y-t^{2}=0$.
(ii) Find the Cartesian equation of the locus of M as t varies.

$\mathbf{0 4}$	3a	
CT		

water is given by $S=\pi(4-h)$.
(ii) Find the rate at which the surface area of the water is changing when the

3 depth of the water is 2 cm .

04 5c Consider the function $f(x)=e^{x}-x$.
CT (i) Show that the curve $y=\mathrm{f}(x)$ is concave up for all values of x
(ii) Find the coordinates and nature of the stationary point on the curve $y=f(x)$.
(iii) Hence show that $e^{x} \geq x+1$ for all values of x. 2

04 6a Consider the function $f(x)=\cos ^{-1}(x-1)$.
CT
(i) Find the domain of the function.
(ii) Sketch the graph of the curve $y=\mathrm{f}(x)$ showing clearly the coordinates of the endpoint.
(iii) The region in the first quadrant bounded by the curve $y=f(x)$ and the coordinate axes is rotated through one complete revolution about the y axis. Find the exact value of the volume of revolution.

04 6b A particle moving in a straight line is performing Simple Harmonic. At time t seconds CT it has displacement x metres to the right of a fixed point O on the line, where $x=4 \cos ^{2} t-2 \sin ^{2} t$.
(i) Show that $x=1+3 \cos 2$ t. Hence express the acceleration $\ddot{x} \mathrm{~ms}^{-2}$ of the particle in the form $\ddot{x}=-n^{2}(x-b)$, where the values of the constant a and b are to be determined.
(ii) Find the set of possible values of x and the period of the motion.
(iii) Find the distance traveled and the time taken (to the nearest tenth of a second) for the particle to first pass through O.
04 7a A particle is moving in a straight line. At time t seconds it has displacement x metres to the right of a fixed point O on the line and velocity $v \mathrm{~ms}^{-1}$ given by $v=\sin x \cos x$. The particle starts $\frac{\pi}{4}$ metres to the right of O
(i) Show that $\frac{d}{d x} \ln (\tan x)=\frac{1}{\sin x \cos x}$
(ii) Hence show that the displacement of the particle is given by $x=\tan ^{-1}\left(e^{x}\right)$.
(iii) Find the limiting position of the particle and sketch the graph of x against t.

particles travel in the same plane of motion. Take $g=10 \mathrm{~ms}^{-1}$.
(i) Write down expressions for the horizontal and vertical displacements relative to O of each particle after time t seconds.
(ii) Show that if the two particles collide, then they do so after 1 second.
(iii) Show that if the two particles collide, when they do so their paths of motion are perpendicular to each other.

A 1a. $1+2 x \tan ^{-1} x$ 1b. $a=-7$ 1c.(ii) $y=-3 x$ and $y=\frac{1}{3} x$ 1d.(ii) ext \angle of cyclic quad equals opp int $\angle \mathbf{2 a}$. $P(5,1)$ 2b. -4 2d.(ii) $y=-2 x^{2} \mathbf{3 a}$.(ii) $4 \mathrm{~cm} \mathbf{3 b}$.(ii) $2 \sqrt{x}-2 \ln (1+\sqrt{x})+c$ 4a. -96 096 4b.(i) $A=100, B=400$ (ii) 7 yrs 5 months 4c. 0.74 5a.(i) $\frac{96}{625}$ (ii) $\frac{609}{625}$
5b.(ii) $5 \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathbf{5 c}$.(ii) $\min (0,1) \mathbf{6 a}$.(i) $0 \leq x \leq 2$ (iii) $\frac{3}{2}$ units $^{3} \mathbf{6 b}$.(i) $\ddot{x}=-2^{2}(x-1)$
(ii) $-2 \leq x \leq 4$ and per $=\pi$ secs (iii) 4 m 7 a.(iii) $\frac{\pi}{2} \mathrm{~m}$ to right of O

7b.(i) From A: hor: $x=10 t$ and vert: $y=20-5 t^{2}$ From 0: hor: $10 \sqrt{5} \cos \theta$ and vert: $y=10 \sqrt{5} \sin \theta-5 t^{2}$

