(A	Catholic Schools Trial Examinations 2004 Mathematics Extension 1 SUPPORT				
04 CT	1a	Find $\frac{d}{dx}(1 + x^2)\tan^{-1}x$.	2			
04 СТ	1b	The polynomial $P(x)$ is given by $P(x) = x^3 + ax + b$ for some real number a . The remainder when $P(x)$ is divided by $(x - 1)$ is equal to the remainder when $P(x)$ is divided by $(x - 2)$. Find the value of a .				
04 CT	1c	 (i) The line y = mx makes an angle of 45° with the line y = 2x. Show that m - 2 = 1 + 2m . (ii) Hence find the equations of the lines y = mx which make an angle of 45° 				
04 CT	1d	ABC is a triangle in which BC = AC. D is a point on the minor arc AC of the circle passing through A, B and C. AD is produced to E. (i) Copy the diagram. (ii) Give a reason why \angle CDE = \angle ABC. (iii) Hence show that DC bisects \angle BDE.	1 3			
04 СТ	2a	A(-5, 6) and B(1, 3) are two points. Find the coordinates of the point P which divides the interval AB externally in the ratio 5:2				
04 CT	2b	The equation $2x^3 + 2x^2 + 4x + 1 = 0$ has roots α , β and γ . Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.				
04 CT	2c	Consider the geometric series $\sin 2x + \sin 2x \cos^2 2x + \sin 2x \cos^2 2x + \dots$ for $0 \le x \le \frac{\pi}{2}$. (i) Show that the limiting sum <i>S</i> of the series exists. (ii) Show that $S = \cot x$.				
04 CT	2d	$P(2t, t^{2}) \text{ is a point on the parabola}$ $x^{2} = 4y$ $R(2t, t^{2}) \text{ is a point on the parabola}$ $x^{2} = 4y.$ The tangent to the parabola at <i>P</i> and the line $y = -tx$ intersect at <i>M</i> . (i) Show that the tangent to the parabola at <i>P</i> has gradient <i>t</i> and equation $tx - y - t^{2} = 0$. (ii) Find the Cartesian equation of the locus of <i>M</i> as <i>t</i> varies.	2 2			

_

_

04 СТ	3a	Three circles with centres A, B and C touch externally in pairs with \angle BCA = 90°, as shown in the diagram. The circles with centres A and B have radii 8cm and 12cm respectively.						
		(i) If the circle with centre C has radius x cm, show that $x^2 + 20x - 96 = 0$.	1					
		(ii) Hence, find the radius of the circle with centre C.						
04	3b	(i) Show that $\frac{u}{u+1} = 1 - \frac{u}{u+1}$.	1					
СТ		(ii) Hence find $\int \frac{1}{1+\sqrt{x}} dx$ using the substitution $x = u^2$, where $u \ge 0$.	3					
04 СТ	3с	Use Mathematical Induction to show that $5^n > 4^n + 3^n$ for all integers $n \ge 3$.						
04 СТ	4a	Find the term independent of x in the binomial expansion of $\left(x - \frac{2}{x^2}\right)^{15}$.	3					
04	4b	After t years, $t \ge 0$, the number N of individuals in a population is given by						
СТ		$N = A + Be^{-0.5t}$ for some constants $A > 0$ and $B > 0$. The initial population size is 500						
		individuals and the limiting population size is 100 individuals.						
		(i) Find the values of A and B.	2					
		(ii) Find the time taken for the population size to fall within 10 of its limiting	2					
		value, giving the answer correct to the nearest month.						
04	4c	Consider the function $f(x) = x - \cos x$.						
СТ		(i) Show that the equation $f(x) = 0$ has a root α such that $0 < \alpha < 1$.						
		(ii) Use one application of Newton's Method with an initial approximation of 0.7	3					
		to approximate α_{i} giving answer correct to 2 decimal places.						
04	5a	In a certain street, 40% of the households have at least 2 cars.						
СТ		If 4 households are chosen at random, find the probability that						
		(i) exactly 3 of these households have at least 2 cars.	1					
		(ii) at most 3 of these households have at least 2 cars.	2					
04	5b	A mould for a container is made by						
СТ		$y = 4 - x^2$ rotating the part of the curve $y = 4 - x^2$,						
		which lies in the first guadrant through						
		h one complete revolution about the y axis.						
	water is poured through a hole in the top. When the depth of water in the conta							
		is h cm, the depth is changing at a rate $\frac{10}{\pi(4-h)}$ cms ⁻¹ .						

(i) Show that when the depth of water is h metres, the surface area $S \text{ m}^2$ of the **1**

http://members.optuszoo.com.au/hscsupport/index.htm

			water is given by $S = \pi(4 - h)$.					
		(ii)	Find the rate at which the surface area of the water is changing when the	3				
			depth of the water is 2cm.					
04	5c	Consider the function $f(x) = e^x - x$.						
СТ		(i)	Show that the curve $y = f(x)$ is concave up for all values of x.	1				
		(ii)	Find the coordinates and nature of the stationary point on the curve $y = f(x)$.	2				
		(iii)	Hence show that $e^x \ge x + 1$ for all values of x.	2				
04	6a	Consid	der the function $f(x) = \cos^{-1}(x - 1)$.					
СТ		(i)	Find the domain of the function.	1				
		(ii)	Sketch the graph of the curve $y = f(x)$ showing clearly the coordinates of the	2				
			endpoint.					
		(iii)	The region in the first quadrant bounded by the curve $y = f(x)$ and the	3				
			coordinate axes is rotated through one complete revolution about the y axis.					
			Find the exact value of the volume of revolution.					
04	6b	A part	cicle moving in a straight line is performing Simple Harmonic. At time t seconds					
СТ		it has	is displacement x metres to the right of a fixed point O on the line,					
		where	$e x = 4\cos^2 t - 2\sin^2 t.$					
		(i)	Show that $x = 1 + 3\cos 2t$. Hence express the acceleration \ddot{x} ms ⁻² of the	2				
			particle in the form $\ddot{x} = -n^2(x - b)$, where the values of the constant a and b					
			are to be determined.					
		(ii)	Find the set of possible values of x and the period of the motion.	2				
		(iii)	Find the distance traveled and the time taken (to the nearest tenth of a					
			second) for the particle to first pass through O.					
04	7a	A part	ticle is moving in a straight line. At time t seconds it has displacement x metres					
СТ		to the	right of a fixed point O on the line and velocity $v \text{ ms}^{-1}$ given by $v = \sin x \cos x$.					
		The pa	article starts $\frac{\pi}{4}$ metres to the right of O					
		(i)	Show that $\frac{d}{d} \ln(\tan x) = \frac{1}{d}$	1				
			dx $\sin x \cos x$	3				
		(11)	Hence show that the displacement of the particle is given by $x = \tan^{-1}(e^{x})$.	2				
	-	(111)	Find the limiting position of the particle and sketch the graph of x against t.					
04 CT	70		$A = 10 \text{ ms}^{-1}$					
CI			20 metres. A particle is projected					
		X	$10\sqrt{5} \text{ ms}^{-1}$ for zoncarry from A with speed 10 ms ⁻¹ . At					
			θ une same instant, a second particle is projected from Ω with speed $10\sqrt{5}$ ms ⁻¹ at					
			x an angle A above the horizontal. The two					
		nartic	an angle σ above the nonzontal. The two less travel in the same plane of motion. Take $q = 10 \text{ ms}^{-1}$	2				
		μαιτις		~				

2 2

- (i) Write down expressions for the horizontal and vertical displacements relative to O of each particle after time *t* seconds.
- (ii) Show that if the two particles collide, then they do so after 1 second.
- (iii) Show that if the two particles collide, when they do so their paths of motion are perpendicular to each other.

A **1a.** 1 + 2xtan⁻¹x **1b.** *a* = -7 **1c.(ii)** *y* = -3*x* and *y* = $\frac{1}{3}x$ **1d.(ii)** ext ∠ of cyclic quad equals opp int ∠ **2a.** *P*(5, 1) **2b.** -4 **2d.(ii)** *y* = -2*x*² **3a.(ii)** 4cm **3b.(ii)** 2 √*x* - 2ln(1 + √*x*) + *c* **4a.** -96 096 **4b.(i)** *A* = 100, *B* = 400 (ii) 7 yrs 5 months **4c.** 0.74 **5a.(i)** $\frac{96}{625}$ (ii) $\frac{609}{625}$ **5b.(ii)** 5cm²s⁻¹ **5c.(ii)** min (0, 1) **6a.(i)** 0 ≤ *x* ≤ 2 (iii) $\frac{3}{2}$ units³ **6b.(i)** $x = -2^2(x - 1)$ (ii) -2 ≤ *x* ≤ 4 and per = *π* secs (iii) 4m **7a.(iii)** $\frac{\pi}{2}$ m to right of O **7b.(i)** From A: hor: *x* = 10*t* and vert: *y* = 20 - 5*t*² From O: hor: 10 √5 cos θ and vert: *y* = 10 √5 sin θ - 5*t*²