

Student Number	
Mark / 25	

Chemistry

**The Chemical Earth and Metals
Modules Test • 2002**

General Instructions

- Reading time – 5 minutes
- Working time – 40 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of this page

Total Marks – 25

Part A – 4 marks

- Attempt Questions 1 – 4
- Allow about 5 minutes for this part

Part B – 21 marks

- Attempt Questions 5 – 8
- Allow about 35 minutes for this part

Part A – 4 marks**Attempt Questions 1–4****Allow about 5 minutes for this part**

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: $2 + 4 =$ (A) 2 (B) 6 (C) 8 (D) 9
A B C D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A B C D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

A B C D
correct → B

Answer Box for Questions 1–4

1	A <input type="radio"/>	B <input type="radio"/>	C <input type="radio"/>	D <input type="radio"/>
2	A <input type="radio"/>	B <input type="radio"/>	C <input type="radio"/>	D <input type="radio"/>
3	A <input type="radio"/>	B <input type="radio"/>	C <input type="radio"/>	D <input type="radio"/>
4	A <input type="radio"/>	B <input type="radio"/>	C <input type="radio"/>	D <input type="radio"/>

Mark your answers for Questions 1 – 4 in the Answer Box on page 2.

1 In which of the following is nitrogen one of the most abundant elements?

(A) atmosphere
(B) biosphere
(C) hydrosphere
(D) lithosphere

2 Phosphorous acid has the formula H_3PO_3 . What is the formula for calcium hydrogen phosphite?

(A) Ca_2HPO_3
(B) $\text{Ca}(\text{HPO}_3)_2$
(C) $\text{Ca}(\text{HPO}_3)_3$
(D) CaHPO_3

3 In the history of metal use, aluminium is a late entry. Which of the following statements best explains the difficulty of extracting a metal like aluminium?

(A) The metal has a low abundance in the earth's crust.
(B) The metal has a high reactivity.
(C) The metal has a low density.
(D) The metal has a high melting point.

4 The diagram represents a block of neighbouring elements on the Periodic Table (none are noble gases). Which of the elements has the highest electronegativity?

L	M
Q	R

(A) L
(B) M
(C) Q
(D) R

Part B – 21 marks

Attempt Questions 5 – 8

Allow about 35 minutes for this part

Question 5 (6 marks)

(a) Compare the electrical conductivity of solid sodium chloride and molten sodium chloride and give reasons for your answer. **(2 marks)**

(b) Draw the Lewis electron dot structure for sodium chloride. **(1 mark)**

HSCFocus.com

(c) Summarise the differences between the boiling and the electrolysis of water as an example of the difference between a physical and chemical change. Record your answer in a table. **(3 marks)**

Question 6 (4 marks)

The properties of substances Y, Z, and L are given in the table.

PROPERTY	Y	Z	L
melting point (°C)	801	498	– 114
boiling point (°C)	1465	954	78
density (g cm ^{–3})	5.4	5.8	0.785
solubility in water at 25°C	soluble	insoluble	soluble
solubility in water at 100°C	soluble	soluble	soluble

(a) Identify the best technique to separate Z from a mixture of Y, Z, L and water. **(1 mark)**

(b) Draw and label the assembled equipment for the separation technique identified in (a). **(2 marks)**

(c) Which element, Y, Z or L, is a liquid at room temperature? **(1 mark)**

Question 7 (7 marks)

(a) Write a balanced chemical equation showing the extraction of an ancient metal. (1 mark)

(b) Australia is the world's third largest producer of lead. Huge smelters are located at Mt Isa, Q and Port Pirie, SA where lead is extracted from lead(II) sulfide. Identify an environmental problem associated with this process. (1 mark)

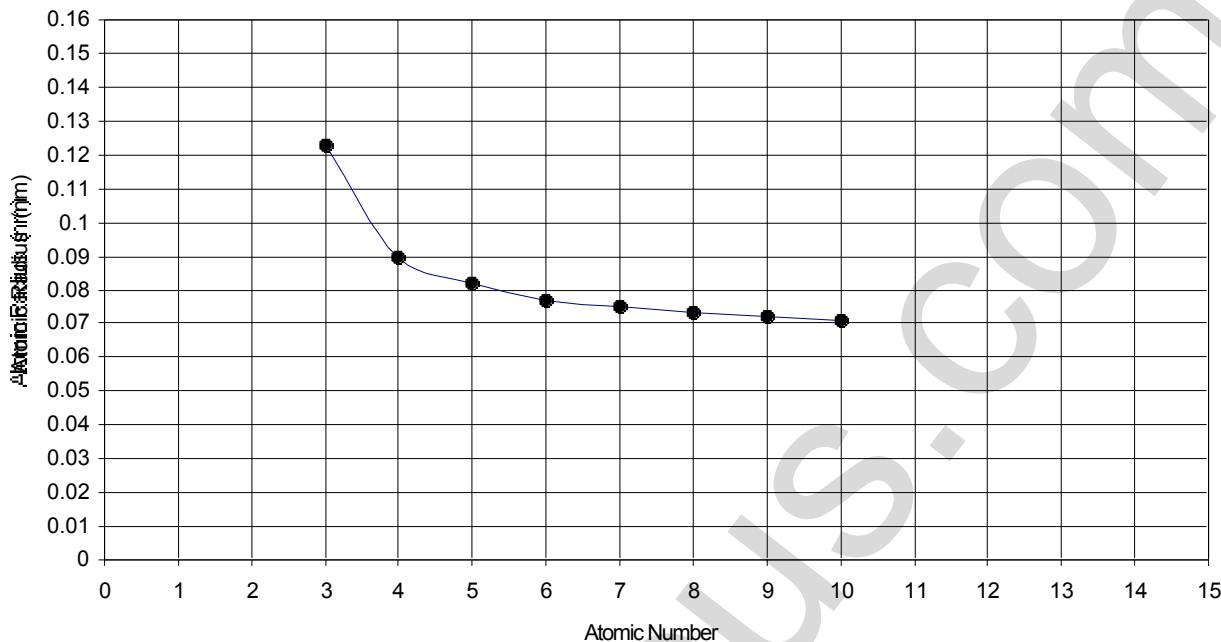
(c) Explain why energy input is necessary to extract a metal from its ore. (1 mark)

(d) Alloys of lead are used in the plumbing and electronics industries.

Identify a property of lead alloys which relates to their use. (1 mark)

(e) Pure lead plates immersed in dilute sulfuric acid are used in car batteries to make electricity.

(i) Write a balanced chemical equation showing the reaction of lead with sulfuric acid. (1 mark)


(ii) Write two half equations to represent the electron transfer reactions occurring when lead reacts with sulfuric acid in reaction (i). (2 marks)

Question 8 (4 marks)

The atomic radii of period 2 elements are shown in the graph.

(a) Plot a new point on the graph showing the *relative* value for the atomic radius of sodium. (1 mark)

(b) Plot a new point on the graph showing the *relative* value for the atomic radius of a lithium ion, Li^+ . (1 mark)

(c) Sketch a curve on the graph showing the *relative* trend in ionisation energy values for period 2 elements. (1 mark)

(d) The ionisation energy for chlorine is 1260 kJ mol⁻¹. Which of the following equations correctly represents the ionisation process? (1 mark)

(i) $\text{Cl}_{(g)} + 1260 \text{ kJ} \rightarrow \text{Cl}_{(g)}^+ + \text{e}^-$

(ii) $\text{Cl}_{2(g)} \rightarrow 2\text{Cl}_{(g)}^+ + 2\text{e}^- + 1260 \text{ kJ}$

(iii) $\text{Cl}_{2(g)} + 2\text{e}^- \rightarrow 2\text{Cl}_{(g)}^- + 1260 \text{ kJ}$

(iv) $\text{Cl}_{2(g)} + 2\text{e}^- + 1260 \text{ kJ} \rightarrow 2\text{Cl}_{(g)}^-$

Answer _____