Sami El Hosri's 4 Unit Mathematics Specimen HSC Paper

QUESTION 1

a) Evaluate $\int_{-1}^{1} \sqrt{(x+2)^2 - 8x} \ dx$.

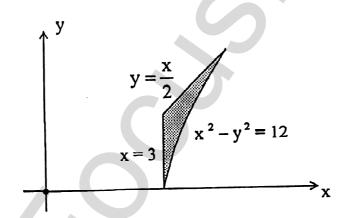
b) Evaluate $\int_{1/16}^{1/9} \frac{\cos(\pi\sqrt{x})}{\sqrt{x}} dx$.

c) Find $\int \frac{\tan^2(\frac{x}{2})}{\sin x} dx$.

d) Prove that $\cot(\frac{x}{2})\tan x = 1 + \frac{1}{\cos x}$. Hence or otherwise, find $\int \cot(\frac{x}{2})\tan x \ dx$.

QUESTION 2

a)



The diagram shows the shaded region enclosed by the parts of the lines $y = \frac{x}{2}, x = 3$ and the part of the hyperbola $x^2 - y^2 = 12$ the area is rotated about the y axis to form a solid. Find the volume of the solid.

b) Sketch on a separate diagrams the following curves. Indicate clearly any turning points, asymptotes and intercepts with the axes.

i)
$$y = \frac{x}{\log_e x}$$

ii)
$$y = \frac{\log_e x}{x}$$
 iii) $y^2 = \frac{\log_e x}{x}$

iii)
$$y^2 = \frac{\log_e x}{x}$$

iv)
$$y = \log_e\left(\frac{\log_e x}{x}\right)$$

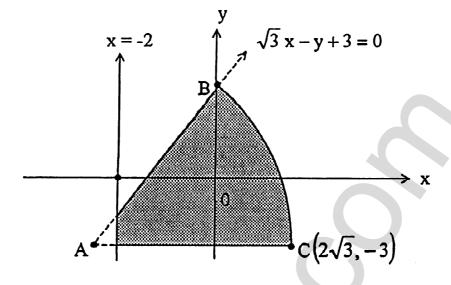
$$\mathbf{v)} \ y = e^{\frac{x}{\log_e x}}.$$

© S & G Publishing and Coaching Academy

Typeset by AMS-TEX

QUESTION 3

a)



NOT TO SCALE

In the Argand diagram above, the shaded region is part of a circle centred at A with radii AC and AB. Find the conditions that should be satisfied by the complex numbers z which are in this region.

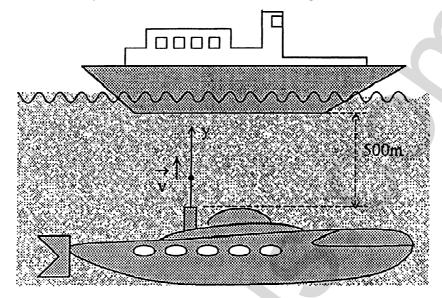
- **b)** Considering the complex numbers $\alpha = (m+6) + (2m+1)i$, $\beta = (2m-1) + (3m+2)i$ and $\phi = (m^2 + 4m + 10) + (m+1)i$ where m is a real number:
- i) given that $[\Im(\alpha+2i)]^2 = 1 + \Re[(\beta+1-i)^2]$, what can be said about the complex number ϕ ?
- ii) given that $|\beta \alpha|^2 = 2\Re(\phi + 10)$ what can be said about the complex number β ?
- c) The complex number z satisfies the locus $|z 2i| = 2\Im(z) 1$. Show that the locus is a hyperbola and neatly sketch its graph showing its foci, directrices and asymptotes.

QUESTION 4

- a) Find the complex square roots of 48 + 14i, giving your answer in the form a + bi, where a and b are real.
- **b)** Consider the polynomial $z^3 (2+7i)z^2 (23-7i)z + 24 = 0$.
- i) This equation has one real root α . Find α .
- ii) If the other roots are the complex numbers β and ϕ , use expressions of the sum and products of the roots, or otherwise, to find β and ϕ . (You may use your result of part a))
- iii) Show that the points on the Argand diagram α, β and ϕ are the vertices of a right-angled isosceles triangle.
- c) If z_1 and z_2 are two complex numbers where $|z_1| = |z_2| = 1$
- i) Show that $\overline{z}_1 = \frac{1}{z_1}$ and hence explain why $\overline{z}_2 = \frac{1}{z_2}$.
- ii) If ϕ is another complex number such that $\phi = \frac{1+z_1+z_1z_2}{1+z_2+z_1z_2}$ and using your result from
- c) i) show that $\phi \cdot \overline{\phi} = 1$ and hence show that $|\phi| = 1$.

QUESTION 5

a) A stationary submarine fires a missile of mass 40 kg with a speed of 500 m/s towards a ship at rest 500 m directly above it, as shown in the diagram below.



The missile is subject to a downward gravitational force of 400 Newtons and water resistance of $\frac{3v^2}{100}$ Newtons in the opposite direction to the velocity v m/s.

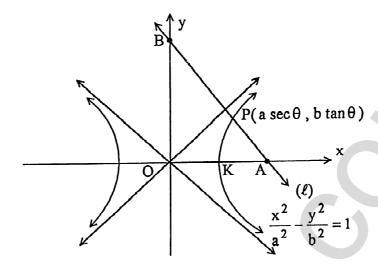
- i) Using $\ddot{y} = \frac{v \ dv}{dy}$, show that, while the missile is rising, $\frac{3v^2}{10000} = 79e^{\frac{-3y}{2000}} 4$.
- ii) Show that the velocity of the missile at the time of impact with the ship is approximately 333 m/s.
- iii) Hence, using $\ddot{y} = \frac{dy}{dt}$, show that the time taken by the missile to hit the ship is $\frac{20\sqrt{3}}{3} \tan^{-1} \left[\frac{334\sqrt{3}}{5395} \right]$ seconds.
- **b) i)** Express $\alpha = \frac{-1+i}{3-i\sqrt{3}}$ in modulus/argument form. Hence evaluate $\cos\frac{11\pi}{12}$ in surd form.
- ii) Find the smallest positive integer K such that α^{K} is imaginary and evaluate K.

QUESTION 6

a) Solve $a^x = e^{2x-1}$ in terms of a where $a > 0, a \neq \frac{1}{e^2}$.

QUESTION 6 (continued)

b)



The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b cuts the positive x axis at the point K. The line (ℓ) which is the normal to the hyperbola at the point $P(a \sec \theta, b \tan \theta)$ cuts the x axis at A and the y axis at B, as shown on the diagram.

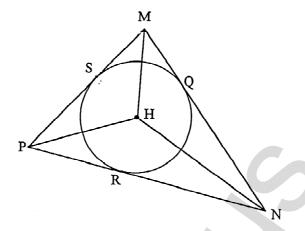
- i) Show that the equation of the line (ℓ) is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$.
- ii) Find the midpoint M of AB.
- iii) Find the point G such that G cuts the interval OM in the ratio 2:1.
- iv) Show that the locus of G is a hyperbola and find the point L at which this locus intersects with the positive x axis.
- v) Show that for the rotio $\frac{OL}{OK} < 1$ is valid only if the condition $1 < e < \sqrt{3}$ must be satisfied.

QUESTION 7

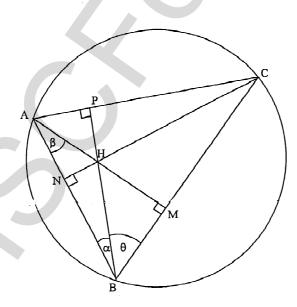
- a) Let $I_n = \int_0^1 \frac{x^n}{\sqrt{9-x^2}} dx$, where n is a positive integer.
- i) Find the value of I_0 .
- ii) Using integration, show that $nI_n = 9(n-1)I_{n-2} 2\sqrt{2}$, for $n \ge 2$.
- iii) Hence evaluate $L = \int_0^1 \frac{x^4}{\sqrt{9-x^2}} \ dx$

QUESTION 7 (continued)

- **b)** PM, PN and MN three tangents to the incircle, of centre H, at the points S, R and Q respectively as shown in the diagram below.
- i) Show that HP bisects $\angle MPN$
- ii) Show that HM bisects $\angle PMN$
- iii) Hence explain a method to draw the incircle of a triangle.



- c) ABC is a triangle inscribed inside a circle. AM, BP and CN are the altitudes to the sides BC, AC and AB respectively, where H is their point of intersection. Let $\angle ABP = \alpha, \angle BAM = \beta, \angle CBP = \theta$.
- i) Show that $\angle NCA = \alpha, \angle BCN = \beta$ and $\angle MAC = \theta$
- ii) Use parts b) and c) i) to show that H is the centre of the incircle to $\triangle MNP$.



NOT TO SCALE

QUESTION 8

- a) i) Show that $(m+n+p)^2 \geq 3(mn+mp+np)$ where m,n and p are positive numbers.
- ii) Hence, or otherwise, show that $m^2n^2+m^2p^2+n^2p^2\geq mnp(m+n+p)$
- **b)** A group of 6 boys and 6 girls went to the theatre with two teachers. In how many ways could they be seated in a row if:
- i) The boys sat apart from the girls, and the teachers sat apart from all the students?
- ii) The teachers sat on each end of the row, and the boys and girls sat in alternate positions on the remaining seats?
- iii) No two boys are seated together?
- c) i) Prove that $\tan^{-1}(x+2) \tan^{-1}(x+1) = \cot^{-1}(x^2+3x+3)$ where $x \ge 0$.
- ii) Simplify the sum $K_n := \cot^{-1} 3 + \cot^{-1} 7 + \cot^{-1} 13 + \cdots + \cot^{-1} (n^2 + 3n + 3)$ where n is a nonnegative integer.
- iii) Show that $\lim_{n\to\infty} K_n = \frac{\pi}{4}$.