Sercise 3

Excraces From

Taylors College COMPLEX NUMBERS Study Guide + ANSWERS

by Jacquie Hargreaves

Geometrical Interpretation of kz

HW (i) If $z_1 = 3 + 4i$ and $z_2 = 13$, find the maximum value of $|z_1 + z_2|$.

(ii) If $|z_1 + z_2|$ has its greatest value, and also $0 < \arg z_2 < \frac{\pi}{2}$, express z_2 in the form x + iy where x and y are real. (86 Catholic Trial)

Subtraction of Vectors

T or F?
$$arg(z_1 - z_2) = arg(z_2 - z_1)$$

Multiplication of Vectors

Given $z_1 = 2 + i$, $z_2 = -2 + 3i$, use both evaluation and vectors to find

(i)
$$z_3 = z_1 + z_2$$
 (ii) $z_4 = z_1 - z_2$ (iii) $z_5 = z_1 z_2$ (iv) $z_6 = i z_1$

Locus in the Complex Plane Q1-2

1. Let z = x + iy then $|z| = \underline{\hspace{1cm}} = r$ i.e., $\underline{\hspace{1cm}} = r^2$.

The graph of |z| = r is a _____.

2. $|z - z_1| = r$ is a _____.

ANSWERS

Geometrical Interpretation of kz

|kz| = |k||z|, arg $kz = \arg k + \arg z = 0 + \arg z$ or $\pi + \arg z$.

The point corresponding to kz lies on the same line through z and the origin, i.e., kz, z and 0 are collinear points.

Geometrical Interpretation of inz

 $|iz| = |i^n z| = |z|$, arg $iz = \frac{\pi}{2} + \arg z$, arg $i^n z = \frac{\pi}{2}(n \mod 4) + \arg z$. z and $i^n z$ have the same modulus and lie on the same circle. The effect of multiplying a complex number by i is an anticlockwise rotation of $\frac{\pi}{2}$.

Geometrical representation of a complex number as a vector

 $z=1+i\sqrt{3} \Rightarrow |z|=2$ and $\arg z=\frac{\pi}{3}$. Thus we can represent Z by the vector \overrightarrow{OZ} length 2 units which makes an angle of $\frac{\pi}{3}$ with the positive x-axis.

Triangle inequality

- 1. F. $|z_1 + z_2|$ is the length of the diagonal of a parallelogram formed from vector addition of z_1 and z_2 . F
- **2.** F. T.

$$|z_1 + z_2| \le |z_1| + |z_2|$$

HW (i) 18 (ii)
$$\frac{52}{5} + \frac{39}{5}i$$

Subtraction of vectors

F

Multiplication of vectors

(i)
$$4i$$
 (ii) $4-2i$ (iii) $-7+4i$ (iv) $-1+2i$

Locus in the Complex Plane Q1-2

- 1. $|z| = \sqrt{x^2 + y^2}$, $x^2 + y^2 = r^2$. The graph of |z| = r is a circle of radius r, centre 0
- **2.** $|z z_1| = r$ is a circle, centre z_1 , radius r.