NEW SOUTH WALES

Bigher School Certificate

Mathematics Extension 2

Exercise 4/67

by James Coroneos*

- **1. The complex numbers form a field.** The elements of a field \mathbb{F} obey the following axioms, (where a, b, c are elements of \mathbb{F}).
 - **L1** $a + b \in \mathbb{F}$ Closure law of addition
 - **L2** $a \times b \in \mathbb{F}$ Closure law of multiplication
 - **L3** a + b = b + a Commutative law of addition
 - **L4** $a \times b = b \times a$ Commutative law of multiplication
 - **L5** (a+b)+c=a+(b+c) Associative law of addition
 - **L6** $(a \times b) \times c = a \times (b \times c)$ Associative law of multiplication
 - **L7** $a \times (b+c) = a \times b + a \times c$ Distributive law of multiplication over addition
 - **L8** If $0 \in \mathbb{F}$ and a + 0 = 0 + a = a, then 0 is the additive identity of \mathbb{F}
 - **L9** if $1 \in \mathbb{F}$ and $a \times 1 = 1 \times a = a$, then 1 is the *multiplicative identity* of \mathbb{F} .
 - **L10** If (-a) and 0 are elements of \mathbb{F} , and a + (-a) = (-a) + a = 0, then (-a) is the *additive inverse* of a.
 - **L11** If a^{-1} and 1 are elements of \mathbb{F} , and $a \times a^{-1} = a^{-1} \times = 1$, where $a \neq 0$, then a^{-1} is the *multiplicative inverse* of a.

If $z_1 = a + ib$, $z_2 = c + id$, $z_3 = e + if$ where a, b, c, d, e, f are real numbers, prove that the laws **L1** to **L11** above are satisfied by the complex numbers z_1, z_2, z_3 . [Note that the additive and multiplicative identities are 0+0i, 1+0i respectively; and that the additive and multiplicative inverses of z_1 are $-z_1 = -a - ib$, $z_1^{-1} = \frac{a}{a^2+b^2} + i \cdot \frac{-b}{a^2+b^2}$ respectively. z_1^{-1} only exists if $z_1 \neq 0$, i.e., if $a + ib \neq 0$, i.e., if $a \neq 0$ and $b \neq 0$]

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by \mathcal{AMS} -TeX.

http://www.geocities.com/coroneosonline

- 2. Which of the field properties L1 to L11 from question 1 hold for complex numbers of the form (i) x + iy (ii) iy where $x, y \in (\mathbf{a}) \mathbb{N}$ (b) \mathbb{Z} (c) \mathbb{Q} ?
- **3.** The definition of a group G under an operation \odot is given below:

"If
$$a, b, c \in G$$
, then

- (i) $a \odot b \in G$
- (ii) $(a \odot b) \odot c = a \odot (b \odot c)$
- (iii) $a \odot I = a$, where $I \in G$ (iv) $a \odot a^{-1} = I$, where a^{-1} is the 'inverse of a' with respect to \odot If further, $a \odot b = b \odot a$, the group is called 'Abelian'."

Investigate whether the numbers 1, -1, i, -i form a group under the operation $(a) + (b) \times$

