Independent Trial HSC 2009 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: H5

• evaluates limit

Answer

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \frac{3}{2} \lim_{x \to 0} \frac{\sin 3x}{3x} = \frac{3}{2} \times 1 = \frac{3}{2}$$

b. Outcomes assessed: H5

Marking Guidelines Criteria

	Criteria	Marks
• identifies a and r for the G.P		1
 applies formula for limiting sum 		1

Answer

$$\left(\frac{e}{e+1}\right) + \left(\frac{e}{e+1}\right)^2 + \left(\frac{e}{e+1}\right)^3 + \dots \qquad \text{is G.P. with } a = \frac{e}{e+1}, \quad \text{and} \quad r = \frac{e}{e+1} \Rightarrow 0 < r < 1$$

$$\therefore \text{ Limiting sum is } \frac{a}{1-r} = \frac{e}{e+1} \div \frac{1}{e+1} = e$$

c. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
• expresses sum of reciprocals of roots in terms of sums of products	1
 evaluates using relationships between roots and coefficients 	1

Answer

$$\alpha$$
, β and γ roots of $x^3 + 2x^2 + 3x + 6 = 0$. $\therefore \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \gamma \alpha + \alpha \beta}{\alpha \beta \gamma} = \frac{3}{-6} = -\frac{1}{2}$

d. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
substitutes values of gradients into formula for tangent of acute angle between the lines	1
evaluates required angle	

Answer

Acute angle
$$\theta$$
 between lines $y = 2x$ and $x + y - 3 = 0$ is given by $\tan \theta = \left| \frac{2 - (-1)}{1 + 2 \cdot (-1)} \right| = 3$

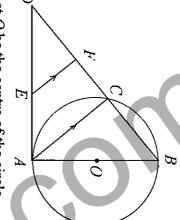
 $\therefore \theta \approx 72^{\circ}$ (to the nearest degree)

e. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
i • quotes alternate segment theorem	.1
ii • gives a sequence of deductions resulting in a test for a cyclic quadrilateral	, p
• justifies these deductions by quoting geometric properties and tests	٠,
iii \bullet explains why BE subtends a right angle at A or at F	<u>,</u>

Answer



Let O be the centre of the circle.

i. The angle between the tangent at A and the chord AC is equal to the angle subtended by that chord in the alternate segment, hence $\angle EAC = \angle ABC$.

ii. $\angle EAC = \angle DEF$ (Corresp. \angle 's with parallel lines AC, EF are equal)

 \therefore $\angle DEF = \angle ABC$ (Both equal to $\angle EAC$)

:. EABF is cyclic (Exterior \angle equal to interior opp. \angle)

iii. $\angle BAE = 90^{\circ}$ (Tangent to circle ABC at A is perpendicular to radius OA drawn

to point of contact)

. BE is a diameter (subtends right \angle at circumference)

of circle EABF.

Question 2

a. Outcomes assessed: H5

Marking Guidelines

Criteria	N	Marks
• finds primitive		1
 evaluates in surd form 		–

Answer

$$\int_0^{\frac{\pi}{8}} \sec 2x \tan 2x \ dx = \frac{1}{2} \left[\sec 2x \right]_0^{\frac{\pi}{8}} = \frac{1}{2} \left(\sqrt{2} - 1 \right)$$

b. Outcomes assessed: PE3

Marking Guidelines

A COMMAND COMMAND	
Criteria	Marks
• counts arrangements for one possible pattern of B's and G's	, 1
• adds number of arrangements for the second possible pattern of B's and G's	-

Answer

BGBGGB or BGGBGB $\therefore 2 \times 3! \times 3! = 72$ ways

c. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• finds x coordinate of P	1
• finds y coordinate of P	1

Answer

$$A(-2,3) B(6,-1)$$

$$3 : 2$$

$$(3\times 6 + 2\times (-2) \times 3 + 2 \times 3 + 2$$

 \therefore P has coordinates $P(\frac{14}{5}, \frac{3}{5})$

d. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
simplifies $1 - \cos x$ in terms of t	1
completes simplification of given expression in terms of t to establish required result	1

Answer

$$t = \tan\frac{x}{2}$$

$$1 - \cos x = 1 - \frac{1 - t^2}{1 + t^2}$$

$$= \frac{2t^2}{1 + t^2}$$

$$= \frac{2t^2}{1 + t^2}$$

$$= \frac{1}{t}$$

$$= \cot\frac{x}{2}$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$= \cot\frac{x}{2}$$

e. Outcomes assessed: PE3, PE4

Marking Guidelines

Criteria	Marks
$i \bullet finds \frac{dy}{dx}$ as a function of t	1
• finds equation of normal in required form	<u> </u>
ii \bullet finds coordinates of M	<u> </u>
• finds equation of locus of M	-

Answer

--

$$y = at^{2} \Rightarrow \frac{dy}{dt} = 2at$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$$

$$x = 2at \Rightarrow \frac{dx}{dt} = 2a$$

:. Normal at P has gradient $-\frac{1}{t}$ and equation $y - at^2 = -\frac{1}{t}(x - 2at)$ $ty - at^3 = -x + 2at$ $x + ty = 2at + at^3$

ii.
$$N(0, 2a + at^2)$$
 :: $M(at, a + at^2)$ Locus of M has equation $y = a + a(\frac{x}{a})^2$

$$P(2at, at^2)$$

$$x^2 = a(y - a)$$

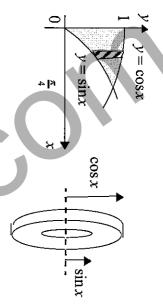
Question 3

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• writes definite integral for the volume in terms of $\cos x$ and $\sin x$	1
• evaluates the integral.	_

Answer



$$V = \pi \int_0^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) \, dx$$
$$= \pi \int_0^{\frac{\pi}{4}} \cos 2x \, dx$$
$$= \frac{1}{2} \pi \left[\sin 2x \right]_0^{\frac{\pi}{4}}$$
$$= \frac{1}{2} \pi (1 - 0)$$

Volume is $\frac{\pi}{2}$ cubic units

b. Outcomes assessed: HE2

Marking Guidelines	
Criteria	Marks
• defines an appropriate sequence of statements $S(n)$ and shows the first member is true	1
• writes the LHS of $S(k+1)$ in terms of RHS of $S(k)$, conditional on truth of $S(k)$	—
• rearranges conditional expression for LHS of $S(k+1)$ to obtain RHS	-
• completes proof by Mathematical Induction	—

Answer

Let S(n), n=2,3,4,..., be the sequence of statements defined by

$$S(n)$$
: $2\times 1 + 3\times 2 + 4\times 3 + ... + n(n-1) = \frac{n(n^2-1)}{3}$

Consider
$$S(2)$$
: $LHS = 2 \times 1 = 2$; $RHS = \frac{2(2^2 - 1)}{2} = 2$

Hence S(2) is true

$$S(n): 2\times 1 + 3\times 2 + 4\times 3 + \dots + n(n-1) = \frac{n(n^2 - 1)}{3}$$
Consider $S(2): LHS = 2\times 1 = 2$; $RHS = \frac{2(2^2 - 1)}{3} = 2$. Hence
$$If S(k) \text{ is true}: 2\times 1 + 3\times 2 + 4\times 3 + \dots + k(k-1) = \frac{k(k^2 - 1)}{3} *$$
Consider $S(k+1): LHS = \left\{2\times 1 + 3\times 2 + 4\times 3 + \dots + k(k-1)\right\} + (k+1)k$

$$= \frac{k(k^2 - 1)}{3} + (k+1)k$$
 if $S(k)$ is true, using *.
$$= \frac{k(k+1)\{(k-1)+3\}}{3}$$

$$= \frac{(k+1)\{k^2 + 2k\}}{3}$$

$$= \frac{(k+1)\{(k+1)^2 - 1\}}{3}$$

$$= \frac{(k+1)\{(k+1)^2 - 1\}}{3}$$

$$= RHS$$

Hence if S(k) is true then S(k+1) is true. But S(2) is true, and hence S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all positive integers $n \ge 2$.

c. Outcomes assessed: HE4

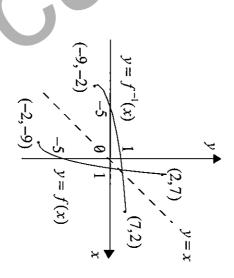
Marking Guidelines

Criteria	Marks
i • rearranges and interchanges x and y to obtain equation of inverse function	1
ii • sketches graph of $y = f(x)$ showing endpoints and intercepts	
• sketches inverse function by reflection in $y = x$	<u> </u>
• shows endpoints and intercepts for inverse function	-
iii • writes equation for x	<u> </u>
\bullet solves for x in simplest exact form	<u> </u>

Answer

i.
$$f(x) = (x+2)^2 - 9$$
, $-2 \le x \le 2$.
 $(x+2)^2 = y+9$ and $0 \le x+2 \le 4$
 $x+2 = +\sqrt{y+9}$
 $\therefore x = -2 + \sqrt{y+9}$, $-9 \le y \le 7$
 $\therefore x \leftrightarrow y \implies f^{-1}(x) = -2 + \sqrt{x+9}$, $-9 \le x \le 7$

ii. Graphs of inverse functions are reflections of each other in y = x



iii. Graphs intersect on the line y = x

Hence
$$(x+2)^2 - 9 = x$$

 $x^2 + 3x - 5 = 0$
 $x > 0 \Rightarrow x = \frac{-3 + \sqrt{29}}{2}$

Question 4

a. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
• writes expression for probability in terms of binomial coefficients	1
 evaluates required probability 	

Answer

Answer
$$P(none\ in\ common) = \frac{{}^{34}C_6}{{}^{40}C_6} \approx 0.35 \ (\text{ to 2 decimal places})$$

b. Outcomes assessed: HE6

Marking Guidelines

Criteria	Marks
• writes du in terms of dx and converts limits for x into limits for u	1
\bullet finds equivalent definite integral in terms of u	<u> </u>
• finds primitive and substitutes limits	<u> </u>
• simplifies exact answer	

Answer

$$u = \sin^2 x$$

$$du = 2\sin x \cos x \, dx$$

$$du = \sin 2x \, dx$$

$$x = \frac{\pi}{4} \implies u = \frac{1}{2}$$

$$x = \frac{\pi}{3} \implies u = \frac{3}{4}$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2x}{1 + \sin^2 x} dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \frac{1}{1 + u} du$$

$$= \left[\ln(1 + u) \right]_{\frac{\pi}{2}}^{\frac{\pi}{4}}$$

$$= \ln \frac{7}{4} - \ln \frac{3}{2}$$

$$= \ln \frac{7}{6}$$

c. Outcomes assessed: H5, PE3

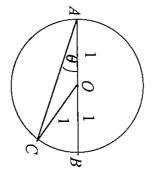
_.

□:

Marking Guidelines	
Criteria	Marks
• finds area of $\triangle AOC$ in terms of $\sin 2\theta$	1
\bullet uses area information to complete equation for θ	<u> </u>
i • shows that $f(0.4)$, $f(0.5)$ have opposite signs	····
• notes that f is continuous, and deduces equation has one root θ , $0.4 < \theta < 0.5$	
ii • applies Newton's rule to write numerical expression for next approximation	·
 evaluates this approximation 	1

Answer

Ξ:



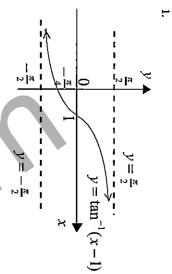
- $\therefore \frac{1}{2} \times 1^2 \times 2\theta + \frac{1}{2} \times 1^2 \times \sin(\pi 2\theta) = \frac{1}{4} \times \pi \times 1^2$ $\angle \Delta = 0$ ($\angle \Delta \Delta D$). equal sides are equal in $\Delta \Delta AOC$). $\angle AOC = \pi - 2\theta$ ($\angle \Delta \Delta DC = \pi$). $\angle BOC = 2\theta$ (adi. sum. Area sector $BOC + Area \Delta AOC = \frac{1}{4} Area circle$ $\theta + \frac{1}{2}\sin 2\theta - \frac{\pi}{4} = 0$
- ii. Let $f(\theta) = \theta + \frac{1}{2}\sin 2\theta \frac{\pi}{4}$ Also $f'(\theta) = 1 + \cos 2\theta > 0 \implies f$ monotonic increasing :. $f(\theta) = 0$ for exactly one value of θ , $0.4 < \theta < 0.5$ $f(0.5) \approx 0.14 > 0$ and f is continuous $f(0\cdot 4) \approx -0\cdot 03 < 0$
- iii. Since $f'(\theta) = 1 + \cos 2\theta$, $\theta \approx 0.4 - \frac{f(0.4)}{}$ ≈ 0.42 (to 2 dec. pl.) f'(0.4)-0.02671.6967

Question 5

a. Outcomes assessed: HE4

Criteria	Marks
i • shows correct shape and asymptotes	1
 shows intercepts on coordinate axes 	_
ii • finds $\frac{dy}{dx}$ and evaluates for $x = 1$	—
• finds equation of tangent	

Answer



:: $y = \tan^{-1}(x-1)$

$$\frac{dy}{dx} = \frac{1}{1 + (x - 1)^2}$$

 $\therefore \frac{dy}{dx} = 1 \text{ when } x = 1$

 \therefore Tangent at (1,0) has gradient 1 and equation y = x - 1

b. Outcomes assessed: HE5

Marking Guidelines

 i • shows by differentiation that a is constant ii • integrates to find a primitive function for t in terms of x • evaluates constant of integration using initial conditions then writes x as a function of t iii • evaluates x at t = 2 and t = 3 to find distance travelled in third second.

Answer

i.
$$v = \sqrt{x} \implies \frac{1}{2}v^2 = \frac{1}{2}x$$

 $\therefore a = \frac{d}{dx}(\frac{1}{2}v^2) = \frac{1}{2} \text{ for all } x$

Hence a is independent of x.

$$\frac{dx}{dt} = x^{\frac{1}{2}}$$

$$\frac{dt}{dt} = x^{\frac{1}{2}}$$

$$\frac{dt}{dx} = x^{-\frac{1}{2}}$$
$$t = 2x^{\frac{1}{2}} + c$$

$$t = 0$$

$$x = 1$$

$$\Rightarrow c = -2$$

$$\therefore t = 2\sqrt{x} - 2$$

$$x = \frac{1}{4}(t+2)^{2}$$

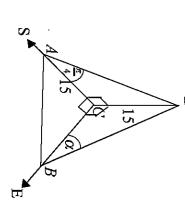
iii. Between t=2 and t=3, particle moves right from x=4 to $x=\frac{25}{4}$ Distance travelled in third second is $2 \cdot 25$ m.

c. Outcomes assessed: H5, HE5, HE7

Marking Guidelines

THE STATE OF THE PARTY OF THE P	
Criteria	Marks
i • finds AC and finds BC in terms of $\cot \alpha$	1
\bullet uses Pythagoras' theorem and an appropriate trig. identity to find AB in terms of cosec α	—
ii • differentiates AB with respect to t using chain rule or implicit differentiation	<u>-</u>
• substitutes given values and interprets result	1

Answer



i. In
$$\triangle ACD$$
,
 $\angle DAC = \angle ADC = \frac{\pi}{4}$

$$\therefore AC = 15.$$
In $\triangle BCD$, $BC = 15\cot\alpha$.

In
$$\triangle BCD$$
, $BC = 15\cot\alpha$.
.: In $\triangle ABC$,

$$AB^{2} = 15^{2} + 15^{2} \cot^{2} \alpha$$
$$= 15^{2} (1 + \cot^{2} \alpha)$$

$$=15^2 \operatorname{cosec}^2 \alpha$$

$$AB = 15 \csc \alpha$$

$$\therefore AB = 15 \csc \alpha$$

ii. When
$$\alpha = \frac{\pi}{2}$$

$$\frac{dAB}{dt} = -15\csc\alpha \cot\alpha \frac{d\alpha}{dt}$$

$$= -15 \times \frac{2}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \times 0.01$$

$$=-0\cdot 1$$

 \therefore AB is decreasing at a rate of $0 \cdot 1 \,\mathrm{ms}^{-1}$

Question 6

a. Outcomes assessed: HE3

Marking Guidelines

iviativing Canacines		
Criteria		Marks
i • integrates ν with respect to t to find expression for x		1
• uses initial conditions to evaluate the constant of integration, giving x as a function of t	n, giving x as a function of t	
• differentiates ν with respect to t to get \ddot{x} then expresses \ddot{x} in terms of x	in terms of x	
ii ◆ states period		 4
states extremities		<u> </u>
iii • solves trig. equation to find time to first return		_

Answer

i.
$$v = -12\sin(2t + \frac{\pi}{3})$$

 $x = 6\cos(2t + \frac{\pi}{3}) + c$
 $x = -24\cos(2t + \frac{\pi}{3})$
 $t = 0, x = 5 \Rightarrow c = 2$

$$\therefore x = 2 + 6\cos(2t + \frac{\pi}{3})$$

: ዝ

ii. Period is
$$\pi$$
 seconds. $-4 \le x \le 8$

ii.
$$x = 5 \Rightarrow \cos(2t + \frac{\pi}{3}) = \frac{1}{2}$$

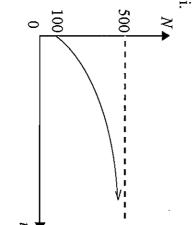
 $2t + \frac{\pi}{3} = \frac{\pi}{3}, 2\pi - \frac{\pi}{3}, ...$
 $t = 0, \frac{2\pi}{3}, ...$

First return after $\frac{2\pi}{3}$ seconds.

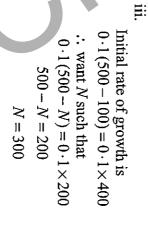
b. Outcomes assessed: HE3

i • sketches graph of correct shape with correct vertical intercept • shows asymptote for limiting population size ii • differentiates with respect to t iii • writes and solves equation for N	Marking Condennes
 sketches graph of correct shape with correct vertical intercept shows asymptote for limiting population size differentiates with respect to t writes and solves equation for N 	Criteria
 shows asymptote for limiting population size ii • differentiates with respect to t iii • writes and solves equation for N 	i • sketches graph of correct shape with correct vertical intercept
ii • differentiates with respect to tiii • writes and solves equation for N	 shows asymptote for limiting population size
iii \bullet writes and solves equation for N	ii • differentiates with respect to t
	iii \bullet writes and solves equation for N

Answer



ii.
$$N = 500 - 400e^{-0.1t}$$
$$\frac{dN}{dt} = 0.1 \times 400e^{-0.1t}$$
$$= 0.1 (500 - N)$$



c. Outcomes assessed: H5, HE4

Marking Guidelines

Criteria	Mark
• uses inverse trig. identity to simplify equation	1
\bullet uses trig. expansion to evaluate x in terms of k	1

Answer

$$\cos^{-1} x - \sin^{-1} x = k, \quad -\frac{\pi}{2} \le k \le \frac{3\pi}{2} \qquad \therefore 2\cos^{-1} x = k + \frac{\pi}{2} \qquad \therefore x = \cos\frac{k}{2}\cos\frac{\pi}{4} - \sin\frac{k}{2}\sin\frac{\pi}{4}$$

$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \qquad \qquad \cos^{-1} x = \frac{k}{2} + \frac{\pi}{4} \qquad \qquad = \frac{1}{\sqrt{2}}(\cos\frac{k}{2} - \sin\frac{k}{2})$$

$$x = \cos(\frac{k}{2} + \frac{\pi}{4})$$

a. Outcomes assessed: HE3

Marking Guidelines

Trial Wing Caluca	
Criteria	Marks
i • uses integration to find expressions for \dot{x} and x	1
• uses integration to find expressions for \dot{y} and y	1
ii • writes simultaneous equations for V and θ	-
ullet finds the value of V	1
\bullet finds the value of θ	1
iii • finds the values of \dot{x} and \dot{y} just before impact	
\bullet uses Pythagoras' theorem to find the magnitude of ν	
\bullet uses trigonometry to find the direction of ν as an angle relative to the horizontal	

Answer

i.

$$\begin{aligned}
\ddot{x} &= 0 & \ddot{y} &= -10 \\
\dot{x} &= c_1 & \ddot{y} &= -10t + c_3 & t &= 0 \\
\vdots &\dot{x} &= V \cos \theta & \vdots & \ddot{y} &= V \sin \theta
\end{aligned}$$

$$\therefore \dot{x} = V \cos \theta \qquad \vdots \dot{y} = V \sin \theta \qquad \dot{y} = V \sin \theta \qquad \vdots \dot{y} = V \sin$$

$$y = -5t^{2} + Vt\sin\theta + c_{4}$$

$$t = 0$$

$$y = 0$$

$$\Rightarrow c_{4} = 0$$

$$y = 0$$

$$\therefore y = Vt\sin\theta - 5t^{2}$$

ii. When t = 8

$$x = 288 \} \Rightarrow 8V \cos \theta = 288$$
$$y = 64 \} \Rightarrow 8V \sin \theta = 384$$

$$\therefore V^2(\cos^2\theta + \sin^2\theta) = 36^2 + 48^2$$
$$V = 60$$

$$\tan \theta = \frac{48}{36} = \frac{4}{3}$$
$$\theta = \tan^{-1} \frac{4}{3}$$

iii. When t = 8 $\dot{x} = 60 \times \frac{3}{5} = 36$ $\dot{y} = -80 + 60 \times \frac{4}{5} = -32$

$$\begin{array}{c|c}
36 \\
\overline{\alpha} & \overline{} & \overline{} \\
\end{array}$$

$$v^2 = 36^2 + 32^2$$
 $\tan \alpha = \frac{8}{9}$
 $v = 4\sqrt{145}$ $\alpha \approx 41.6^{\circ}$

Velocity of rocket just before impact is approximately 48 ms⁻¹ inclined at 42° below the horizontal.

b. Outcomes assessed: HE3

Marking Guidelines

Man wing Guidennes	
Criteria	Marks
i • writes a typical term in x' in the expansion of the RHS of the identity	. 1
• collects like terms to find coefficient of x' , then equates to coefficient of x' on LHS	<u> </u>
ii • writes single binomial coefficient for sum on LHS	→
• writes single binomial coefficient for sum on RHS then deduces result	

Answei

i.
$$(1+x)^{m+n} = (1+x)^m (1+x)^n$$

For $0 \le r \le m$ and $0 \le r \le n$,

terms in x^r in expansion of the RHS have the form ${}^mC_k x^k \times {}^nC_{r-k} x^{r-k}$, k=0,1,2,...,r.

Collecting such like terms gives the coefficient of x' as $\sum_{k=0}^{\infty} {}^{m}C_{k} {}^{n}C_{r-k}$.

The coefficient of x' in the expansion of the LHS is $^{m+n}C_r$.

Hence equating coefficients of x' on both sides of the identity gives $^{m+n}C_r = \sum_{k=0}^r {^mC_k}^n C_{r-k}$.

ii. Using i., for
$$m \ge 2$$
 and $n \ge 2$,

Indepen	dent Tris	Independent Trial Examination 2009 Mathematics Extension 1	Mapping Grid	rid
Question	Marks	Content	Syllabus Outcomes	Targeted Performance
3	J	Tironometric functions	LIA	Bands
6	2	Series and applications	H5	E2-E3
C	2	Polynomials	PE3	E2-E3
þ	2	Angle between two lines	H5	E2-E3
e 1	J	Circle geometry		E2-E3
		Choic geomeny	FE2, FE3	E2-E3
111		Circle geometry	PE3	E2-E3
2 a	2	Trigonometric functions	H5	E2-E3
Ъ	2	Permutations and combinations	PE3	E2-E3
c	2	Division of an interval	H5	E2-E3
. C .	2	Trigonometric functions	H5	E2-E3
e I	2	Parametric representation	PE3, PE4	E2-E3
11:	2	Parametric representation	PE3, PE4	E2-E3
3 a	2	Trigonometric functions	HS	E2-E3
Ъ	4	Induction	HE2	E3-E4
C1	Ľ	Inverse functions	HE4	E2-E3
: 11	υ	Inverse functions	HE4	E2-E3
III	1	THACT SE THE CHOTTS	ric4	EZ-E3
4 a	2	Further probability	HE3	E2-E3
Ь	4	Methods of integration	HE6	E2-E3
C I	2	Trigonometric functions	H5	E2-E3
11:	2	Polynomials	PE3	E2-E3
III	1	I OTYTIOITIALS	FEO	E2-E3
5 ai	2	Inverse functions	HE4	E2-E3
1	2	Inverse functions	HE4	E2-E3
b ₁	1	Velocity and acceleration as functions of displacement	HE5	E2-E3
11	2	Velocity and acceleration as functions of displacement	HE5	E2-E3
111:		Velocity and acceleration as functions of displacement	HE5	E2-E3
C 1	2	Trigonometric functions		E3-E4
11:	2	Rates of change	HE5, HE7	E3-E4
6 21	ادر	Simple harmonic motion	цн3	F3_F4
\$	2	Simple harmonic motion	HE3	E3-E4
1111	1	Simple harmonic motion	HE3	E3-E4
Ьi	2	Exponential growth and decay	HE3	E2-E3
ii	1	Exponential growth and decay	HE3	E2-E3
iii	1	Exponential growth and decay	HE3	E2-E3
С	2	Trigonometric functions, inverse functions	H5, HE4	E2-E3
7 0;	J	Projectile motion	ur2	E2 E4
/ 21	2 1	Projectile motion	HE3	E3-E4
# : #	υ C	Projectile motion	HE3	E3-E4
	ى د	Projectile motion	HE3	E3-E4
0 1	۱ د	Binomial theorem	HE3	E3-E4
11	2	Binomial theorem	HE3	E3-E4