Independent Trial HSC 2008 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• writes primitive and substitutes for x	1
• evaluates in simplest surd form	1

Answer

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec x \tan x \, dx = \left[\sec x \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = \sec \frac{\pi}{3} - \sec \frac{\pi}{4} = 2 - \sqrt{2}$$

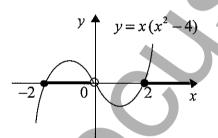
b. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
• writes an equivalent inequality not involving a variable denominator	1
• writes one inequality for x	1
• combines this with a second inequality for x	1

Answer

$$\frac{x^2 - 4}{x} \ge 0$$
$$x(x^2 - 4) \ge 0 \quad , \quad x \ne 0$$



By inspection of the graph, $-2 \le x < 0$ or $x \ge 2$

c. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
i • finds gradient of tangent to $y = x^3$ at P	1
• finds gradient of tangent to $y = 1 - \ln x$ at P	1
ii • finds the acute angle between the lines correct to the nearest degree	1

1

Answer

i.

$$y = x^{3}$$

$$\frac{dy}{dx} = 3x^{2}$$

$$x = 1 \Rightarrow \frac{dy}{dx} = 3$$

$$y = 1 - \ln x$$

$$\frac{dy}{dx} = -\frac{1}{x}$$

$$x = 1 \Rightarrow \frac{dy}{dx} = -1$$

Tangent at P(1,1) has gradient 3

Tangent at P(1,1) has gradient -1

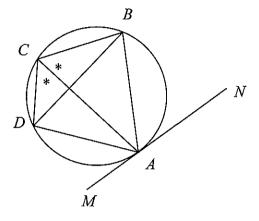
ii.
$$\tan \theta = \left| \frac{3 - (-1)}{1 + 3 \times (-1)} \right| = 2 \implies \theta \approx 63^{\circ}$$
 (to the nearest degree)

d. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria	Marks
• explains why angles BAN, BCA are equal	1
• explains why angles <i>DCA</i> , <i>DBA</i> are equal	1
• uses the equality of angles BCA, DCA to complete proof that angles BAN, DBA are equal	1
• quotes test for parallel lines to deduce tangent MAN is parallel to BD	1

Answer



∠BAN = ∠BCA (angle between tangent and chord drawn to point of contact is equal to angle subtended by the chord in the alternate segment)
∠BCA = ∠DCA (given that AC bisects ∠BCD)
∠DCA = ∠DBA (angles subtended at the circumference by the same arc DA are equal)
∴ MAN || DB (equal alternate angles on transversal BA since

 $\angle BAN = \angle DBA$)

Question 2

a. Outcomes assessed: H3, H5

Marking Guidelines

Triating Guidennes	
Criteria •	Marks
• writes condition on common ratio $\ln x$ for existence of limiting sum	1
• solves this inequality for x	1

Answer

Limiting sum of geometric series $1 + \ln x + (\ln x)^2 + ...$ exists for $-1 < \ln x < 1$

 \therefore since $f(x) = e^x$ is an increasing function,

$$e^{-1} < e^{\ln x} < e^1$$

$$\therefore \ \frac{1}{e} < x < e$$

b. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• finds x coordinate of P	1
• finds y coordinate of P as the sum of two surds	1
• simplifies surd expression for y	1

$$\begin{array}{cccc}
A(8,\sqrt{8}) & B(50,\sqrt{50}) \\
\hline
2 & : & 1 \\
\hline
\left(\frac{100+8}{2+1}, \frac{2\sqrt{50}+\sqrt{8}}{2+1}\right)
\end{array}$$

$$\therefore P\left(36, \frac{10\sqrt{2} + 2\sqrt{2}}{3}\right)$$
$$P\left(36, 4\sqrt{2}\right)$$

c. Outcomes assessed: H5

Marking Guidelines

	Criteria	Marks
i • finds value of R		1
• finds value of α		1
ii • solves equation for x		1

Answer

i.
$$\cos x - \sqrt{3}\sin x = 2\left(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x\right)$$
$$= 2\left(\cos\frac{\pi}{3}\cos x - \sin\frac{\pi}{3}\sin x\right)$$
$$= 2\cos\left(x + \frac{\pi}{3}\right)$$

ii.
$$\cos x - \sqrt{3} \sin x = -2$$
, $0 \le x \le 2\pi$
 $\cos \left(x + \frac{\pi}{3}\right) = -1$, $\frac{\pi}{3} \le x + \frac{\pi}{3} \le 2\pi + \frac{\pi}{3}$
 $x + \frac{\pi}{3} = \pi$
 $x = \frac{2\pi}{3}$

d. Outcomes assessed: PE3, PE4

Marking Guidelines

Criteria	Marks
 i • shows by differentiation that tangent has gradient t • finds the equation of the tangent ii • substitutes coordinates of P to write equation for t • solves equation for t 	1 1 1 1

Answer

i.
$$y = t^2 \implies \frac{dy}{dt} = 2t$$

$$x = 2t \implies \frac{dx}{dt} = 2$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$$

ii.
$$P(1,-2)$$
 lies on this tangent if $t+2-t^2=0$

$$t+2-t=0$$

 $t^2-t-2=0$
 $(t-2)(t+1)=0$
 $t=2 \text{ or } t=-1$

Tangent at $T(2t, t^2)$ has gradient t

and equation
$$y - t^2 = t(x - 2t)$$

$$y - t^2 = tx - 2t^2$$

$$tx - y - t^2 = 0$$

Question 3

a. Outcomes assessed: PE5, HE4

Marking Guidelines

THAT KING GUIDEIMES	
Criteria	Marks
• applies the product rule, obtaining first term	1
• obtains second term by deriving inverse sine	1

$$\frac{d}{dx}\left(x\sin^{-1}x\right) = \sin^{-1}x + \frac{x}{\sqrt{1-x^2}}$$

b. Outcomes assessed: H5, HE4

Marking Guidelines

Criteria	Marks
i • shows $f(x)$ is increasing for $x > 1$	1
• shows the curve $y = f(x)$ is concave up for $x > 1$	
ii • sketches $y = f(x)$ showing endpoint and asymptote $y = x$	1
• sketches $y = f^{-1}(x)$ showing endpoint and asymptote	1
iii \bullet makes x the subject	1
• interchanges x and y to find equation of inverse function	1

Answer

i.
$$f(x) = x + \frac{1}{x}$$
 for $x \ge 1$

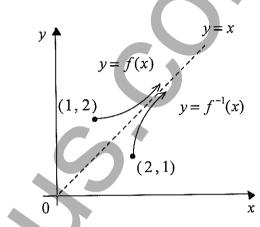
$$f'(x) = 1 - \frac{1}{x^2} > 0$$
 for $x > 1$

f(x) is increasing for x > 1

$$f''(x) = \frac{2}{x^3} > 0$$
 for $x > 1$

 $\therefore y = f(x)$ is concave up for x > 1

ii.



iii.
$$y = x + \frac{1}{x}$$
, $x \ge 1$ and $y \ge 2$

Rearrangement gives

$$x^2 - xy + 1 = 0$$
, $x \ge 1$ and $y \ge 2$

Considering this quadratic in x: $x = \frac{y \pm \sqrt{y^2 - 4}}{2}$, $x \ge 1$ and $y \ge 2$

Clearly the branch $x = \frac{y - \sqrt{y^2 - 4}}{2}$ contains points for which x < 1.

Hence expressing x as the subject of y = f(x), $x = \frac{y + \sqrt{y^2 - 4}}{2}$, $y \ge 2$.

Interchanging x and y, the inverse function is $f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2}$, $x \ge 2$

c. Outcomes assessed: HE2

Marking Guidelines

Criteria	Marks
• verifies truth of statement for $n=1$	1
• expresses LHS of $S(k+1)$ in terms of LHS of $S(k)$	
• expresses LHS of $S(k+1)$ in terms of RHS of $S(k)$, conditional on truth of $S(k)$	<u>l</u>
• completes algebraic rearrangement to show $S(k+1)$ is true if $S(k)$ is true	

Answer

Define the sequence of statements S(n), n = 1, 2, 3, ... by S(n): $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + ... + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

Consider
$$S(1)$$
: $LHS = \frac{1}{2!} = \frac{1}{2}$ $RHS = 1 - \frac{1}{2!} = 1 - \frac{1}{2} = \frac{1}{2}$ $\therefore S(1)$ is true If $S(k)$ is true: $\frac{1}{2!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$ **

Consider $S(k+1)$: $LHS = \left\{ \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} \right\} + \frac{k+1}{(k+2)!}$ if $S(k)$ is true, using **

$$= \left\{ 1 - \frac{1}{(k+1)!} \right\} + \frac{k+1}{(k+2)!}$$

$$= 1 - \frac{k+2}{(k+2)(k+1)!} + \frac{k+1}{(k+2)!}$$

$$= 1 - \frac{k+2 - (k+1)}{(k+2)!}$$

$$= 1 - \frac{1}{(k+2)!}$$

$$= RHS$$

Hence if S(k) is true, then S(k+1) is true. But S(1) is true, hence S(2) is true, and then S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all positive integers $n \ge 1$.

Question 4

a. Outcomes assessed: H8

Marking Guidelines

Criteria	Marks
• expresses integrand in terms of cos8x	1
• finds primitive function	$\begin{vmatrix} 1 \end{vmatrix}$

Answer

$$\int \cos^2 4x \ dx = \int \frac{1}{2} \left(1 + \cos 8x \right) dx = \frac{1}{2} x + \frac{1}{16} \sin 8x + c$$

b. Outcomes assessed: H5, PE3

Marking Guidelines

Wai king Guidelines		
Criteria	Marks	
i • uses cosine rule and trigonometric identity to find AB in terms of $\sin \frac{1}{2}\theta$	1	
• adds arc length to AB, equating sum and diameter to obtain required equation	1	
ii • shows $f(1)$ and $f(2)$ have opposite signs	1	
• uses continuity of $f(\theta)$ to deduce equation has root between 1 and 2.	1	
iii • applies Newton's rule, substituting $\theta = 1$	1	
• evaluates expression to obtain next approximation, giving result correct to 1 dec. place	1	

Answer

i. Using cosine rule,
$$AB^2 = 1^2 + 1^2 - 2\cos\theta$$

$$AB^2 = 2(1 - \cos \theta)$$
$$= 4\sin^2 \frac{1}{2}\theta$$

$$\therefore AB = 2\sin\frac{1}{2}\theta$$

$$\therefore$$
 Perimeter = diameter $\Rightarrow \theta + 2\sin\frac{1}{2}\theta = 2$

$$\theta + 2\sin\frac{1}{2}\theta - 2 = 0$$

ii. Let
$$f(\theta) = \theta + 2\sin\frac{1}{2}\theta - 2$$

$$f(1) = -1 + 2\sin\frac{1}{2} \approx -0.04 < 0$$

$$f(2) = 2\sin 1 \approx 1.68 > 0$$

Since $f(\theta)$ is continuous,

$$f(\theta) = 0$$
 for some $1 < \theta < 2$

iii.
$$f(\theta) = \theta + 2\sin\frac{1}{2}\theta - 2$$

$$f'(\theta) = 1 + \cos\frac{1}{2}\theta$$

$$\theta_1 = \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)}$$

$$\theta_1 = 1 - \frac{-1 + 2\sin\frac{1}{2}}{1 + \cos\frac{1}{2}}$$

 $\therefore \theta_1 \approx 1.0 \text{ (to 1 dec. place)}$

c. Outcomes assessed: HE6

Marking Guidelines

	Criteria	Marks
• writes dx in terms of du	*	1
\bullet writes integrand in terms of u and	changes limits to u values	
• finds primitive function		1
• evaluates in simplest exact form		

Answer

$$x = u^2, \ u \ge 0$$
$$dx = 2u \, du$$

$$x = 1 \implies u = 1$$

$$x = 25 \Rightarrow u = 5$$

$$\int_{1}^{25} \frac{1}{x + \sqrt{x}} dx = \int_{1}^{5} \frac{1}{u(u+1)} \cdot 2u \, du$$

$$=2\Big[\ln(u+1)\Big]_1^5$$

$$=2(\ln 6 - \ln 2)$$

$$=2\ln 3$$

Question 5

a. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
$i \bullet \text{shows } P(1) = 0$	1
ii • uses product of roots is 1 to deduce 3^{rd} root is reciprocal of α	1
iii • writes sum of squares of roots in terms of square of sum and sum of two-way products	1
• uses relationships between coefficients of polynomial equation and its roots	1

i.
$$P(x) = x^3 - kx^2 + kx - 1$$

$$P(1) = 1 - k + k - 1 = 0$$

ii. Product of the roots is 1.
Hence if the roots are 1,
$$\alpha$$
, β ,

then
$$\alpha\beta = 1$$
. $\therefore \frac{1}{\alpha}$ is the 3rd root.

iii.
$$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$\therefore \alpha^2 + \frac{1}{\alpha^2} + 1^2 = k^2 - 2k$$

$$\therefore \alpha^2 + \frac{1}{\alpha^2} = k^2 - 2k - 1$$

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • counts the number of codes with all three digits different	1
 divides by the total number of codes to find the probability 	
ii • counts the number of codes with exactly two digits the same	L 1
writes the probability of such a code	1

Answer

- i. $P(all\ different) = \frac{9 \times 8 \times 7}{9 \times 9 \times 9} = \frac{56}{81}$
- ii. Consider code of form A, A, B or A, B, A or B, A, A Number of such codes is $9 \times 8 \times 3$

$$P(\text{exactly two the same}) = \frac{9 \times 8 \times 3}{9 \times 9 \times 9} = \frac{8}{27}$$

c. Outcomes assessed: HE4, HE5

Marking Guidelines

Criteria	Marks
i • finds θ in terms of x	1
ii • derives θ with respect to x	1
• finds the derivative of θ with respect to t in terms of x	1
• states the rate at which θ is changing when $x = 20$	1

Answer

i.
$$\tan \theta = \frac{40}{x}$$
, $0 < \theta < \frac{\pi}{2}$
 $\therefore \theta = \tan^{-1} \frac{40}{x}$

ii.
$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt}$$

$$= \frac{1}{1 + \frac{1600}{x^2}} \cdot \frac{-40}{x^2} \cdot .5$$

$$= \frac{-200}{x^2 + 1600}$$

$$\therefore x = 20 \implies \frac{d\theta}{dt} = -\frac{1}{10}$$

 θ is decreasing at a rate of 0.1 radians per second.

Question 6

a. Outcomes assessed: H3, HE3, HE5

Marking Guidelines

Marking Guidelines		
Criteria	Marks	
i • finds a in terms of x	1	
ii \bullet finds t as a function of x by integration	1	
• rearranges to find x as a function of t	T.	
iii • finds t when $x = 0$	1	
iv • shows intercepts on the axes	1	
• shows asymptote $x = 2$	1	

7

Answer

i.
$$v = 2 - x$$

$$a = v \frac{dv}{dx}$$

$$= (2 - x) \cdot (-1)$$

$$= x - 2$$

ii.
$$\frac{dx}{dt} = 2 - x$$

$$\frac{dt}{dx} = \frac{1}{2 - x}$$

$$t = -\ln A(2 - x), \quad A \text{ constant}$$

$$t = 0$$

$$x = -4$$

$$\Rightarrow A = \frac{1}{6}$$

$$\therefore -t = \ln\left(\frac{2-x}{6}\right)$$

$$e^{-t} = \frac{2-x}{6}$$

$$6e^{-t} = 2-x$$

$$\therefore x = 2-6e^{-t}$$

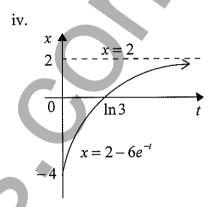
iii. When
$$t = 0$$
, $x = -4$ $\therefore v > 0$

Particle is initially moving right, and it continues moving right approaching x = 2.

Hence particle has travelled 4 metres from its starting point when x = 0.

$$x = 0 \implies -t = \ln \frac{1}{3}.$$

: particle travels first 4 metres in ln3 seconds.



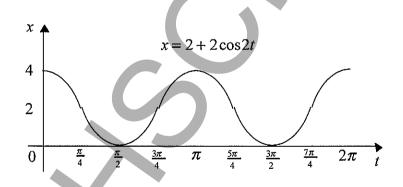
b. Outcomes assessed: HE3

Marking Guidelines

Marking Guidelines		
Criteria	Marks	
i • sketches curve with correct shape and position showing intercept on x axis	1	
• shows intercepts on t axis for at least one period	1	
ii • differentiates to find \ddot{x} as a function of t , and hence as a function of x		
iii ◆ states the period of the motion	1	
iv • finds x when $t = 2$	1	
• states the distance travelled in the first 2 seonds	1	

Answer

i.



ii.
$$\dot{x} = -4\sin 2t$$

 $\ddot{x} = -4(2\cos 2t)$
 $= -4(x-2)$

iii. Period is π seconds

iv.
$$t = 2 \implies x = 2 + 2\cos 4 \approx 0.69$$

But $\frac{\pi}{2} < 2 < \frac{3\pi}{4}$. Hence by inspection of the graph, particle has travelled 4.7 m (correct to 2 sig. fig.)

Question 7

a. Outcomes assessed: HE3

Marking Guidelines

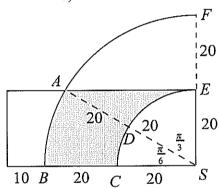
Criteria	Marks
i • writes expressions for x and y	1
• finds x when $y = 0$ and hence required expression for R	1
ii • calculates R for $V = 20$ when $\theta = 15^{\circ}$, $\theta = 45^{\circ}$	1
• identifies region that can be watered	1
• finds the area of at least part of this region	1
• finds the total area in simplest exact form	<u> </u>

Answer

i.
$$x = Vt \cos \theta$$
 $y = -\frac{1}{2}gt^2 + Vt \sin \theta$
 $x = R$ when $y = 0$ and $t \neq 0$

$$y = 0, \ t \neq 0 \implies V \sin \theta = \frac{1}{2}gt$$
$$t = \frac{2V \sin \theta}{g}$$
$$\therefore R = \frac{V^2(2\sin\theta\cos\theta)}{g} = \frac{V^2 \sin 2\theta}{g}$$

ii.
$$V = 20$$
, $\theta = 15^{\circ} \implies R = 20$
 $V = 20$, $\theta = 45^{\circ} \implies R = 40$



The area of lawn that can be watered is shaded on the diagram.

Since
$$\cos \angle ESA = \frac{20}{40}$$
, $\angle ESA = \frac{\pi}{3}$ and $\angle ASB = \frac{\pi}{6}$.

$$Area = Sector \ ABS + \Delta AES - Quadrant \ ECS$$

$$= \frac{1}{2} \times 40^2 \times \frac{\pi}{6} + \frac{1}{2} \times 40 \times 20 \sin \frac{\pi}{3} - \frac{1}{4} \times \pi \times 20^2$$

$$= 100 \times \frac{\pi}{3} + 200\sqrt{3}$$

Area is $100\left(\frac{\pi}{3} + 2\sqrt{3}\right)$ square metres.

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • writes binomial expansion	1
ii • substitutes $x = 1$ to deduce required result	1
iii • finds primitive of LHS of i.	1
• finds primitive of RHS of i.	1
 evaluates definite integrals of LHS and RHS between limits 0 and 1 	1
• uses result from ii. to deduce required result	1

Answer
i. (1+x)ⁿ =
$${}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + ... + {}^{n}C_{n}x^{n}$$
ii. $x = 1 \Rightarrow 2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n}$
But ${}^{n}C_{0} = 1$ $\therefore \sum_{n=1}^{n} {}^{n}C_{n} = 2^{n} - 1$

iii.
$$\left[\frac{1}{n+1}(1+x)^{n+1}\right]_0^1 = \left[{}^nC_0x + {}^nC_1\frac{1}{2}x^2 + \dots + {}^nC_n\frac{1}{n+1}x^{n+1}\right]_0^1$$

$$\frac{1}{n+1}\left(2^{n+1}-1\right) = {}^nC_0 + \frac{1}{2}{}^nC_1 + \frac{1}{3}{}^nC_2 + \dots + \frac{1}{n+1}{}^nC_n$$

$$\therefore \frac{1}{n+1}\sum_{r=1}^{n+1} {}^{n+1}C_r = \sum_{r=0}^n \frac{{}^nC_r}{r+1} \quad \text{(using ii. with } n \to n+1\text{)}$$

			Syllabus	Targeted
Question	Marks	Content	Outcomes	Performance
				Bands
1 a	2	Trigonometric functions	H5	E2-E3
b	3	Inequalities	PE3	E2-E3
ci	2	Gradient of a tangent to a curve; Logarithmic functions	H5	E2-E3
ii	1	Angle between two lines	H5	E2-E3
d	4	Circle geometry	PE2, PE3	E2-E3
2 a	2	Series; Exponential and logarithmic functions	H3, H5	E2-E3
b	3	Division of an interval	H5	E2-E3
c i	2	Further trigonometry	H5	E2-E3
ii	1	Further trigonometry	H5	E2-E3
d i	2	Parametric representation	PE4	E2-E3
ii	2	Parametric representation	PE3	E2-E3
				- Maria Laura Laura
3 a	2	Rules of differentiation; Inverse trigonometric functions	PE5, HE4	E2-E3
b i	2	Geometrical applications of differentiation	H5	E2-E3
ii	2	Inverse functions	HE4	E2-E3
iii	2	Inverse functions	HE4	E2-E3
С	4	Mathematical induction	HE2	E3-E4
4 a	2	Integration	H8	E2-E3
<u>b i</u>	2	Trigonometric functions	H5	E2-E3
ii	2	Polynomials	PE3	E2-E3
iii	2	Iterative methods	PE3	E2-E3
С	4	Methods of integration	HE6	E2-E3
5 a i	1	Polynomials	PE3	E2-E3
ii	1	Polynomials	PE3	E2-E3
iii	2	Polynomials	PE3	E2-E3
<u>bi</u>	2	Further probability	HE3	E2-E3
ii	2	Further probability	HE3	E2-E3
c i	1	Inverse trigonometric functions	HE4	E2-E3
ii	3	Rates of change	HE5	E2-E3
6 a i	1	Velocity, acceleration as functions of x	HE5	E3-E4
ii	2	Velocity, acceleration as functions of x	HE5	E3-E4
iii	1	Exponential and logarithmic functions	H3	E3-E4
iv	2	Exponential growth and decay	HE3	E3-E4
bi 	2	Simple harmonic motion	HE3	E3-E4
ii	1	Simple harmonic motion	HE3	E3-E4
iii	1	Simple harmonic motion	HE3	E3-E4
iv	2	Simple harmonic motion	HE3	E3-E4
		7	76.00	
7 a i	2	Projectile motion	HE3	E3-E4
ii	4	Projectile motion	HE3	E3-E4
bi 	1	Binomial expansion	HE3	E3-E4
ii	1	Binomial expansion	HE3	E3-E4
iii	4	Binomial expansion	HE3	E3-E4