2006	o Catho	lic Trial HSC Examination Mathematics Extension 1	1
2006 Catholic Schools		Catholic Schools Trial Examination Mathematics Extension 1)
		SUPPORT	SUPPORT
06	1a	$\frac{\pi}{6}$	2
СТ		Evaluate $\int \sec 2x \tan 2x \ dx$.	
		Ö	
06	1b	Find the acute angle between the lines $3x - y - 2 = 0$ and $x + 2y - 3 = 0$.	2
СТ		Give the answer correct to the nearest degree.	
06	1c	The polynomial $P(x)$ is given by $P(x) = x^3 + (k-1)x^2 + (1-k)x - 1$ for some real	
СТ		number k.	
		(i) Show that $x = 1$ is a root of the equation $P(x) = 0$.	1
		(ii) Given that $P(x) = (x - 1)(x^2 + kx + 1)$, find the set of values of k such that	3
		the equation $P(x) = 0$ has 3 real roots.	
06	1d	Two circles intersect at A D	
СТ		and B . P is a point on the	
		first circle and Q is a point	
		on the second circle such	
		that PAQ is a straight line.	
		C is a point on the second	
		circle. The line QC	
		produced and the tangent	
		to the first circle at P	
		meet at D.	
		(i) Copy the diagram.	
		(ii) Give a reason why $\angle DPA = \angle PBA$.	1
		(iii) Give a reason why $\angle CQA = \angle CBA$.	1
		(iv) Hence show that BCDP is a cyclic quadrilateral.	2
06	2a	Show that $\frac{d}{dx} 3^x = 3^x \ln 3$.	2
СТ		ax	
06	2b	A(-3, 7) and $B(4, -2)$ are two points. Find the coordinates of the point P which	2
СТ		divides the interval AB internally in the ratio 3:2.	
06	2c	Solve the equation $1 + \cos 2x = \sin 2x$ for $0 \le x \le 2\pi$.	4

1

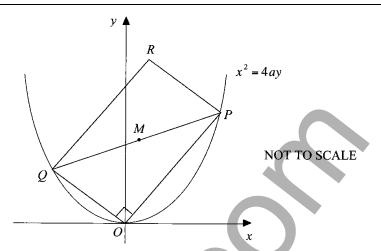
2

06 2d $P(2ap, ap^2)$ and $Q(2aq, aq^2)$

CT

are two points which move on the parabola $x^2 = 4ay$ such that $\angle POQ = 90^\circ$, where O(0, 0) is the origin. $M(a(p+q), \frac{1}{2}a(p^2+q^2))$ is

the midpoint of *PQ*. *R* is the point such that *OPRQ* is a rectangle.



- (i) Show that pq = -4.
- (ii) Show that R has coordinates $(a(p+q), a(p^2+q^2))$
- (ii) Find the equation of the locus of *R*.

06 3a Consider the function $f(x) = \frac{x^2}{x^2 - 1}$.

(i) Show that f(x) is an even function.

(ii) Show that $\lim_{X \to \infty} f(x) = 1$.

(iii) Show that the graph y = f(x) has a maximum turning point at the origin.

(iv) Sketch the graph y = f(x) showing clearly the equations of any asymptotes. 2

(v) The function g(x) is defined by $g(x) = \frac{x^2}{x^2 - 1}$, $x \ge 0$.

Find the equation of the inverse function $g^{-1}(x)$ and state its domain.

06 3b Use Mathematical induction to show that for all positive integers $n \ge 1$,

CT $\frac{3}{1\times2\times2} + \frac{4}{2\times3\times2^2} + \frac{n+2}{n(n+1)2^n} = 1 - \frac{1}{(n+1)2^n}.$

The region in the first quadrant bounded by the curve $y = 2 \tan^{-1} x$ and the y axis

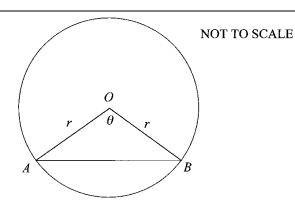
between y=0 and $y=\frac{\pi}{2}$ is rotated through one complete revolution about the y axis. Find the exact volume of the solid of revolution so formed.

06 4b AB is a chord of a circle of radius r

CT which subtends an angle θ ,

 $0 < \theta < \pi$, at the centre O.

The area of the minor segment cut off by chord AB is one half of the area of the sector AOB.



(i) Show that $\theta - 2\sin \theta = 0$.

(ii) Use an initial approximation $\theta_1 = 2$, and one application of Newton's method

to find a second approximation to the value of θ .

Round your answer to 2 decimal places.

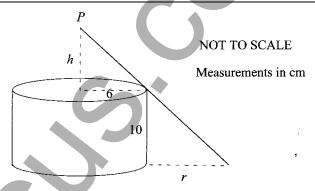
- 4c Don guesses at random the answers to each of 6 multiple choice questions. In each question there are 3 alternative answers, only one of which is correct.
- 4
- (i) Find the probability in simplest exact form that Don answers exactly 2 of the 6 questions correctly.
- (ii) Find the probability in simplest exact form that the 6th question that Don attempts is only the 2nd question that he answers correctly.
- O6 5a Use the substitution u = x 1 to evaluate $\int_{0.5}^{1.5} \frac{1}{\sqrt{2x x^2}} dx.$

4

Give the answer in simplest exact form.

66 5b A solid wooden cylinder of height**CT** 10 cm and radius 6 cm rests with its base on a horizontal table.

A light source P is being lowered vertically downwards from a point above the centre of the top of the cylinder at a constant rate of $0.1\,\mathrm{cm\,s^{-1}}$.



When the light source is h cm above the top of the cylinder the shadow cast on the table extends rcm from the side of the cylinder.

(i) Show that $r = \frac{60}{h}$.

1

(ii) Find the rate at which r is changing when h = 5.

3

- **66 5c** A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms⁻¹ given by $v^2 = 32 + 8x 4x^2$ and acceleration a ms⁻².
 - (i) Find an expression for a in terms of x.

1

(ii) Find the centre and amplitude of the motion.

2

(iii) Find the maximum speed of the particle.

1

- **06 6a** At time t minutes the volume flow rate R kilolitres per minute of water into a tank is given by $R = 4\sin^2 t$, $0 \le t \le \pi$.
 - (i) Find the maximum rate of flow of water into the tank.

1

(ii) Find the total amount of water which flows into the tank.

3

Give the answer correct to the nearest litre.

- **6b** At time t years the number N of individuals in a population is given by N = A + Be-t for some real constants A and B. After $\ln 2$ years there are 60 individuals and after $\ln 5$ years there are 36 individuals.
 - (i) Show that A and B satisfy the equations 2A + B = 120 and 5A + B = 180.

3

Hence find the values of A and B.

(ii) Find the limiting population size.

1

6c A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line and velocity v ms⁻¹ given by $v = \frac{x(2-x)}{2}$. The

particle starts 1 metre to the right of O.

(i) Show that $\frac{2}{x(2-x)} = \frac{1}{x} + \frac{1}{2-x}$.

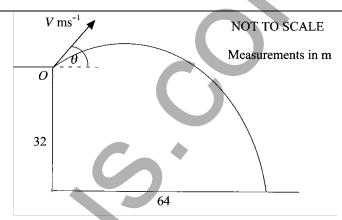
3

(ii) Find an expression for x in terms of t.

1

1

7a A particle is projected with velocity $V \, \text{ms}^{-1}$ at an angle θ above the horizontal from a point O on the edge of a vertical cliff 32 metres above a horizontal beach. The particle moves in a vertical plane under gravity, and 4 seconds later it hits the beach at a point 64 metres from the foot of the cliff.



The acceleration due to gravity is 10ms⁻²

- (i) Use integration to show that after t seconds the horizontal displacement x metres and the vertical displacement y metres of the particle from O are given by $x = (V\cos\theta)t$ and $y = (V\sin\theta)t 5t^2$ respectively.
- (ii) Write down two equations in V and θ then solve these equations to find the exact value of V and the value of θ in degrees correct to the nearest minute.
- (iii) Find the speed of impact with the beach correct to the nearest whole number and the angle of impact with the beach correct to the nearest minute.
- **7b** (i) Write down the expansion of $x(1 + x)^n$ in ascending powers of x.
- CT (ii) Hence show that $2^{n}C_1 + 3^{n}C_2 + ... + n^{n}C_{n-1} = (n+2)(2^{n-1}-1)$.

Α

1a. $\frac{1}{2}$ **b.** 82° **c.(ii)** $k \leq -2$ or $k \geq 2$ **d.(ii)** \angle in alt segment (iii) \angle in same segment

2b.
$$(\frac{6}{5}, \frac{8}{5})$$
 2c. $\frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}$ **2d.** $x^2 = 4a(y - 8a)$ **3a.(v)** $x^2 = \frac{y}{y-1}, \{x: x \le 0 \text{ or } x > 1\}$

4a.
$$\frac{\pi}{2}(4-\pi)$$
 4b.(ii) 1.90 **4c.(i)** $\frac{80}{243}$ **(ii)** $\frac{80}{729}$ **5a.** $\frac{\pi}{3}$ **5b.(ii)** 0.24 cm s⁻¹ **5c.(i)** $a=4-4x$

(ii) centre at 1m right of O and amp is 3m (iii) 6 ms⁻¹ 6a.(i) 4 kL/min (ii) 6283L 6b.(ii) 20

6c.(ii) $x = \frac{2}{1 + e^{-t}}$ **7a.(ii)** $V\cos\theta = 16$ and $V\sin\theta = 12$, V = 20 and $\theta = 36^{\circ}52'$ **(iii)** 32ms^{-1} and

60°15′ **7b.(i)**
$$x + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{3} + ... + {}^{n}C_{n-1}x^{n} + x^{n+1}$$
.