

2005

YEAR 12

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Working time 2 Hours.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work
- Hand in your answer booklets in 4 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4),
 Section C (Questions 5 and 6) and Section D (Question 7)

Total Marks - 84

- Attempt questions 1-7
- All QUESTIONS are of equal value.

Examiner:

A. Fuller

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

Total marks - 84 Attempt Questions 1 - 7 All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

	Section A	
Question 1 (12 mark	rs)	Marks
(a)	Simplify $\frac{3^n}{3^{n+1}-3^n}$	1
(b)———	Evaluate $\lim_{x\to 0} \frac{\sin 5x}{4x}$	1
(c)	The remainder when $x^3 - 3x^2 + px - 14$ is divided by $x - 3$	2
	is 1. Find the value of p .	
(d)	Given that $\log_a 2 = x$, find $\log_a (2a)$ in terms of x.	2
		en e
(e)	Find the coordinates of the point P that divides the	2
	interval from A (-1,5) to B (6,-4) externally in the ratio $3:2$.	
(f)	Find, to the nearest minute, the acute angle between	2
	The lines $3x + 2y - 5 = 0$ and $x - 5y + 7 = 0$.	
(g)	Solve the inequality $\frac{2}{x} \le 1$	2

Question 2 (12 marks)

(a) Differentiate with respect to x

(i)
$$y = \tan^3 \left(5x + 4\right)$$

2

(ii)
$$y = \ln\left(\frac{2x+3}{3x+4}\right)$$

2

(iii)
$$y = \cos(e^{1-5x})$$

2

- (b) 30 girls, including Miss Australia, enter a Miss World Competition. The first six places are announced.
 - (i) How many different announcements are possible?

1

(ii) How many different announcements are possible if Miss Australia is assured a place in the first six?

2

- (c) If $f(x) = \tan^{-1}(2x)$ evaluate:
 - (i) $f\left(\frac{1}{2}\right)$

1

(ii) $f'\left(\frac{1}{2}\right)$

2

End of Section

Section B (Use a SEPARATE writing booklet)

Marks

Question 3 (12 marks)

State the natural domain and the corresponding (a) (i) range of $y = 3\cos^{-1}(x-2)$

Hence, or otherwise sketch $y = 3\cos^{-1}(x-2)$ (ii)

Find $\int x\sqrt{16+x^2}dx$ using the substitution $u=16+x^2$ (b)

Find the general solution of $\sin 2\theta = \sqrt{3}\cos 2\theta$ (c)

2

The roots of the equation $4x^3 + 6x^2 + c = 0$, (d) where c is a non-zero constant, are α , β , and $\alpha\beta$.

Show that $\alpha\beta \neq 0$. (i)

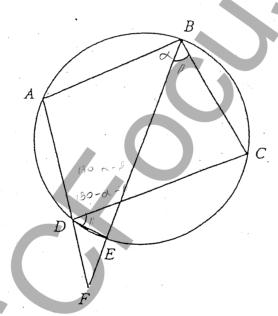
5

- Show that $\alpha\beta + \alpha^2\beta + \alpha\beta^2 = 0$ and deduce the (ii) value of $\alpha + \beta$.
- Show that $\alpha\beta = -\frac{1}{2}$. (iii)

Question 4 (12 marks)

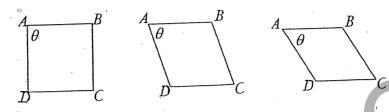
(a) If
$$\tan \theta = 2$$
 and $0 < \tilde{\theta} < \frac{\pi}{2}$ evaluate $\sin \left(\theta + \frac{\pi}{4} \right)$.

(b) In the diagram ABCD is a cyclic quadrilateral. The bisector of ∠ABC cuts the circle at E, and meets AD produced at F.



- (i) Copy the diagram showing the above information
- (ii) Give a reason why ∠CDE=∠CBE
- (iii) Show that DE bisects ∠CDF

3



A square ABCD of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at A (θ) decreases at a constant rate of 0.1 radians per second.

- (i) At what rate is the area of the rhombus ABCD decreasing when $\theta = \frac{\pi}{6}$?
- (ii) At what rate is the shorter diagonal of the rhombus ABCD decreasing when $\theta = \frac{\pi}{3}$?

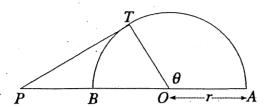
Section C (Use a SEPARATE writing booklet)

Marks

1

Question 5 (12 marks)

- (a) Two boys decide to settle an argument by taking turns to toss a die. The first person to throw a six wins.
 - (i) What is the probability that the first person wins on his second throw?
 - (ii) What is the probability that the first person will win the argument?
- (b) $P(2at, at^2)$, t > 0 is a point on the parabola $x^2 = 4ay$. The normal to the parabola at P cuts the x axis at X and the y axis at Y.
 - (i) Show that the normal at P has equation $x + ty 2at at^3 = 0$
 - (ii) Find the co-ordinates of X and Y
 - (iii) Find the value of t such that P is the midpoint of XY 2



The point T lies on the circumference of a semicircle, radius r and diameter AB, as shown. The point P lies on AB produced and PT is the tangent at T.

The arc AT subtends an angle of θ at the centre, O, and the area of ΔOPT is equal to that of the sector AOT.

- (i) Show that $\theta + \tan \theta = 0$.
- (ii) Taking 2 as an approximation to θ , use Newton's method once to find a better approximation to two decimal places.

Question 6 (12 marks)

- (a) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given origin O satisfies the equation $\frac{d^2x}{dt^2} = -4x$ where t is the time in seconds
 - (i) Show that $x = \alpha \cos(2t + \beta)$ is a possible equation of motion for this particle, where α and β are constants
 - (ii) The particle is observed initially to have a velocity of 2 metres

 per second and a displacement from the origin of 4 metres.

 Find the amplitude of the oscillation.
 - (iii) Determine the maximum velocity of the particle 2
- (b) Prove by Mathematical Induction that $\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4} n^2 (n+1)^2$
- (c) Consider the function $f(x) = \frac{x}{\sqrt{1-x^2}}$
 - (i) Find the domain of f(x)
 - (ii) Find $f^{-1}(x)$, the inverse function of f(x)

Section D (Use a SEPARATE writing booklet)

Marks

Question 7 (12 marks)

- (a) A projectile fired with velocity V and at an angle of 45° to the horizontal, just clears the tops of two vertical posts of height $8a^2$, and the posts are $12a^2$ apart. There is no air resistance, and the acceleration due to gravity is g.
 - (i) If the projectile is at a point P(x, y) at time t, Derive expressions for x and y in terms of t.

2

(ii) Hence, show that the equation of the path of the projectile is $y = x - \frac{gx^2}{V^2}$

2

(iii) Using the information in (ii) show that the range of the projectile is $\frac{V^2}{a}$

2

(iv) If the first post is b units from the origin, show that

2

$$(\alpha) \qquad \frac{V^2}{g} = 2b + 12a^2$$

$$(\beta) \qquad 8a^2 = b - \frac{gb^2}{V^2}$$

(v) Hence or otherwise prove that $V = 6a\sqrt{g}$

4

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE: $\ln x = \log_e x, x > 0$