

2005

YEAR 12

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Working time 2 Hours.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work
- Hand in your answer booklets in 4 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4),
 Section C (Questions 5 and 6) and Section D (Question 7)

Total Marks - 84

- Attempt questions 1-7
- All QUESTIONS are of equal value.

Examiner: A. Fuller

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

Answer each SECTION in a SEPARATE writing booklet.

Section A

Marks

Question 1 (12 marks)

- (a) Simplify $\frac{3^n}{3^{n+1}-3^n}$
- (b) Evaluate $\lim_{x\to 0} \frac{\sin 5x}{4x}$
- (c) The remainder when $x^3 3x^2 + px 14$ is divided by x 3 is 1. Find the value of p.
- (d) Given that $\log_a 2 = x$, find $\log_a (2a)$ in terms of x.
- (e) Find the coordinates of the point P that divides the interval from A (-1,5) to B (6,-4) externally in the ratio 3:2.
- (f) Find, to the nearest minute, the acute angle between

 The lines 3x + 2y 5 = 0 and x 5y + 7 = 0.
- (g) Solve the inequality $\frac{2}{x} \le 1$

Question 2 (12 marks)

(a) Differentiate with respect to x

(i)
$$y = \tan^3(5x + 4)$$

(ii)
$$y = \ln\left(\frac{2x+3}{3x+4}\right)$$

(iii)
$$y = \cos(e^{1-5x})$$

2

- (b) 30 girls, including Miss Australia, enter a Miss WorldCompetition. The first six places are announced.
 - (i) How many different announcements are possible?

1

(ii) How many different announcements are possible if Miss Australia is assured a place in the first six?

2

(c) If
$$f(x) = \tan^{-1}(2x)$$
 evaluate:

(i)
$$f(\frac{1}{2})$$

1

(ii)
$$f'\left(\frac{1}{2}\right)$$

~

End of Section

Section B (Use a SEPARATE writing booklet)

Marks

Question 3 (12 marks)

(a) (i) State the natural domain and the corresponding range of $y = 3\cos^{-1}(x-2)$

2

(ii) Hence, or otherwise sketch $y = 3\cos^{-1}(x-2)$

1

(b) Find $\int x\sqrt{16+x^2}dx$ using the substitution $u=16+x^2$

2

(c) Find the general solution of $\sin 2\theta = \sqrt{3}\cos 2\theta$

2

(d) The roots of the equation $4x^3 + 6x^2 + c = 0$, where c is a non-zero constant, are α , β , and $\alpha\beta$.

5

(i) Show that $\alpha\beta \neq 0$.

(ii) Show that $\alpha\beta + \alpha^2\beta + \alpha\beta^2 = 0$ and deduce the value of $\alpha + \beta$.

(iii)

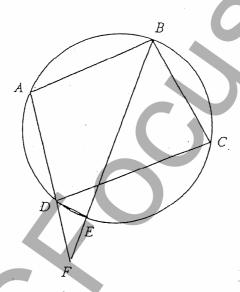
Show that $\alpha\beta = -\frac{1}{2}$.

Question 4 (12 marks)

(a) If
$$\tan \theta = 2$$
 and $0 < \tilde{\theta} < \frac{\pi}{2}$ evaluate $\sin \left(\theta + \frac{\pi}{4} \right)$.

2

(b) In the diagram ABCD is a cyclic quadrilateral. The bisector of ∠ABC cuts the circle at E, and meets AD produced at F.

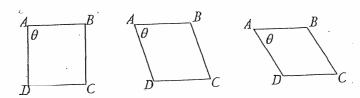


- (i) Copy the diagram showing the above information
- (ii) Give a reason why ∠CDE=∠CBE

1

(iii) Show that DE bisects ∠CDF

3



A square ABCD of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at A (θ) decreases at a constant rate of 0.1 radians per second.

(i) At what rate is the area of the rhombus ABCD decreasing when $\theta = \frac{\pi}{6}$?

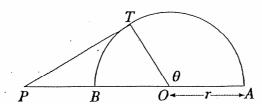
2

(ii) At what rate is the shorter diagonal of the rhombus ABCD decreasing when $\theta = \frac{\pi}{3}$?

Section C (Use a SEPARATE writing booklet)

Ouest	ion 5 (12 mark	\mathbf{s})	Marks
	(a)		Two boys decide to settle an argument by taking turns to toss a die. The first person to throw a six wins.	
	•	(i)	What is the probability that the first person wins on his second throw?	1
		(ii)	What is the probability that the first person wilf win the argument?	2
			60	••
	(b)		$P(2at, at^2)$, $t > 0$ is a point on the parabola $x^2 = 4ay$. The normal to the parabola at P cuts the x axis at X and the y axis at Y.	
		(i)	Show that the normal at P has equation $x + ty - 2at - at^3 = 0$	2
		(ii)	Find the co-ordinates of X and Y	. 1
•		(iii)	Find the value of t such that P is the midpoint of XY	2

(c)



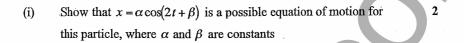
The point T lies on the circumference of a semicircle, radius r and diameter AB, as shown. The point P lies on AB produced and PT is the tangent at T.

The arc AT subtends an angle of θ at the centre, O, and the area of ΔOPT is equal to that of the sector AOT.

- (i) Show that $\theta + \tan \theta = 0$.
- (ii) Taking 2 as an approximation to θ , use Newton's method once to find a better approximation to two decimal places.

Question 6 (12 marks)

(a) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given origin O satisfies the equation $\frac{d^2x}{dt^2} = -4x$ where t is the time in seconds



- (ii) The particle is observed initially to have a velocity of 2 metres

 per second and a displacement from the origin of 4 metres.

 Find the amplitude of the oscillation.
- (iii) Determine the maximum velocity of the particle 2
- (b) Prove by Mathematical Induction that $\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4} n^2 (n+1)^2$
- (c) Consider the function $f(x) = \frac{x}{\sqrt{1-x^2}}$
 - (i) Find the domain of f(x).
 - (ii) Find $f^{-1}(x)$, the inverse function of f(x)

End of Section

Section D (Use a SEPARATE writing booklet)

Marks

Question 7 (12 marks)

- (a) A projectile fired with velocity V and at an angle of 45° to the horizontal, just clears the tops of two vertical posts of height $8a^2$, and the posts are $12a^2$ apart. There is no air resistance, and the acceleration due to gravity is g.
 - (i) If the projectile is at a point P (x, y) at time t,
 Derive expressions for x and y in terms of t.
 - (ii) Hence, show that the equation of the path of the projectile is $y = x \frac{gx^2}{V^2}$
 - (iii) Using the information in (ii) show that the range of the projectile is $\frac{V^2}{g}$
 - (iv) If the first post is b units from the origin, show that 2

$$(\alpha) \qquad \frac{V^2}{g} = 2b + 12a^2$$

$$(\beta) \qquad 8a^2 = b - \frac{gb^2}{V^2}$$

(v) Hence or otherwise prove that $V = 6a\sqrt{g}$

End of paper