Mathematics Extension I CSSA HSC Trial Examination 2001 Marking Guidelines

Question 1

(a) Outcomes Assessed: H5, H9

Marking Guidelines

	Criteria	Marks
one mark for simplification of sum		2
one mark for value of sum		

Answer:

$$\sum_{k=1}^{4} (-1)^{k} k! = -1! + 2! - 3! + 4! = 19$$

(b) Outcomes Assessed: P4

Marking Guidelines	
Criteria	Marks
 one mark for values of gradients 	
• one mark for value of $\tan \theta$	3
 one mark for size of angle 	

AB has gradient
$$m_1 = 3$$
 $\Rightarrow \tan \theta = \left| \frac{3 - \left(-\frac{1}{2}\right)}{1 + 3\left(-\frac{1}{2}\right)} \right| = 7$ $\therefore \theta = 81^{\circ} 52'$

(c) Outcomes Assessed: (i) P5 (ii) PE3

Marking Guidelines

Criteria	Marks
(i) • one mark for showing $P(x)$ is odd	,
(ii) • one mark for showing remainder is $-P(2)$	w
 one mark for value of remainder 	

Answer:

$$P(-x) = (-x)^{5} + a(-x)^{3} + b(-x)$$

$$= -x^{5} - a x^{3} - b x$$

$$= -(x^{5} + a x^{3} + b x)$$

$$= -P(x) \text{ for all } x$$

(ii) When
$$P(x)$$
 is divided by $(x+2)$, remainder is $P(-2) = -P(2)$ since $P(x)$ is odd

$$=-5 \quad \text{since } P(2)=5$$

$$P(x)$$
 is odd.

$$\therefore P(x)$$
 is odd.

2603 - 2

 $\frac{5y-3\times(4)}{5y-12} = -6 \implies 5y-12 = -12$

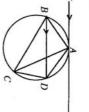
 $\therefore y = 0$

(d) Outcomes Assessed: (i) (ii) PE3 (iii) PE3 (iv) H5, PE2, PE3

Marking Guidelines

Criteria	Marks
(i) • no marks for copying diagram	
(ii) • one mark for reason	10
(iii) • one mark for reason	4
(iv) • one mark for showing $\angle MAB = \angle ABD$	
• one mark for showing $\angle ACB = \angle ACD$	

Answer:



>

(iii) $\angle ACD = \angle ABD$ because the angles subtended in the same segment at B and C by the arc AD are

equal.

- (ii) ∠ ACB = ∠ MAB because the angle between the tangent MA and the chord AB through the point of contact A is equal to the angle ACB in the alternate segment.
 - 3 $\angle ACB = \angle ACD (\angle MAB = \angle ACB, \angle ABD = \angle ACD)$ $\angle MAB = \angle ABD$ (equal alternate angles, MN // BD) :. AC bisects \(\mathcal{L}BCD \)

Question 2

(a) Outcomes Assessed: P7, PE5

Marking Guidelines

k for second derivative using product rule	Criteria
2	Marks

Answer

$$e^{x^{2}} = 2xe^{x^{2}} \qquad \frac{d^{2}}{dx^{2}}e^{x^{2}} = \frac{d}{dx}2xe^{x^{2}} = 2(e^{x^{2}}) + (2x)(2xe^{x^{2}}) = 2(1+2x^{2})e^{x^{2}}$$

(b) Outcomes Assessed: P4

Marking Guidelines Criteria

		Answer:	• on	· on	
$\frac{5y-3\times(4)}{5}=-$	$\frac{5x-3\times(-1)}{5-3} =$		 one mark for equation in y one mark for coordinates of B 	 one mark for equation in x 	,
$\frac{5y - 3x(4)}{5(3)} = -6 \implies 5y - 12 = -12 \qquad \therefore y = 0$	$\frac{5x - 3 \times (-1)}{5 - 3} = 14 \implies 5x + 3 = 28$		in y tes of B		Criteria
∴ y = 0	:x = 5				ria
B(5,0)					
			ω	Cu intai	Marks

(c) Outcomes Assessed: PE3

Marking Guidelines

Criteria	Marks
 one mark for number of arrangements of vowels 	000
one mark for number of arrangements of consonants	ω
one mark for total number of arrangements	

Answer:

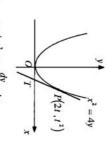
Hence the total number of arrangements is $12 \times 60 = 720$. The vowels (E, E, I, O) can be arranged in positions 2, 4, 6, 8 in $\frac{4!}{2!} = 12$ ways.

The consonants (N,N,S,T,X) can be arranged in positions 1, 3, 5, 7, 9 in $\frac{5!}{2!}$ = 60 ways.

(d) Outcomes Assessed: (i) PE3, PE4 (ii) PE3 (iii) PE3

(i) • one mark for equation of tangent	Criteria Criteria	Marks
(ii) • one mark for coordinates of	of T	4
 one mark for coordinates of M 	of M	
(iii) • one mark for equation of locus	ocus	

Answer:



(i)
$$y = \frac{1}{4}x^2 \implies \frac{dy}{dx} = \frac{1}{2}x$$

 \therefore tangent at $P(2t, t^2)$ has gradient $\frac{1}{2}(2t) = t$
and equation $y - t^2 = t(x - 2t)$
 $tx - y - t^2 = 0$

(ii) At
$$T$$
, $y = 0 \Rightarrow tx - 0 - t^2 = 0 \Rightarrow x = t$
Hence T has coordinates $(t, 0)$, and M is the midpoint of $P(2t, t^2)$ and $T(t, 0)$, with coordinates $\left(\frac{2t+t}{2}, \frac{t^2+0}{2}\right) \equiv \left(\frac{3t}{2}, \frac{t^2}{2}\right)$

(iii) At M,
$$x = \frac{3t}{2} \implies t = \frac{2x}{3}$$

$$\therefore y = \frac{1}{2}t^2 = \frac{1}{2}\left(\frac{2x}{3}\right)^2 = \frac{2x^2}{9}$$

Hence the locus has equation $2x^2 = 9y$

Question 3

(a) Outcomes Assessed: (i) P4 (ii) PE3

	and expansion and expressions for cos 2A, sin 2A
Marks	Criteria

(ii) • one mark for expressing
$$2\cos 3A$$
 in terms of $\left(x+\frac{1}{x}\right)$

• one mark for simplification to obtain final expression for $\cos 3A$ in terms of x • one mark for binomial expansion of $\left(x+\frac{1}{x}\right)^3$

Answer:

$$\cos 3A = \cos(2A + A)$$

$$= \cos 2A \cos A - \sin 2A \sin A$$

$$= (2 \cos^3 A - 1) \cos A - (2 \sin A \cos A) \sin A$$

$$= 2\cos^3 A - \cos A - 2\sin^2 A \cos A$$

$$= 2\cos^3 A - \cos A - 2\sin^2 A \cos A$$

$$= 2\cos^3 A - \cos A - 2(1 - \cos^2 A) \cos A$$

$$= x^3 + 3x + \frac{3}{x} + (\frac{1}{x})^3 - 3x - \frac{3}{x}$$

$$= 4\cos^3 A - 3\cos A$$

$$= x^3 + \frac{1}{x^3}$$

(b) Outcomes Assessed: (i) P5, HE4 (ii) P5, HE4 (iii) P4

Marking Guidelines

Criteria	Marks
One mark for the domain of the inverse function	
SHE HERE TO THE CONTROL OF THE HANDEST TRUCTION	
(ii) • one mark for the graph of $y = f(x)$ and intercepts	
	1
• one mark for the graph of $y = f^{-1}(x)$ and intercepts	,
• one mark for the line $y = x$ passing through the point of intersection	
(III) • one mark for the equation	
 one mark for the coordinates of the point of intersection 	

Answer:

Interchanging x and y
$$y = \sqrt{x+6}$$

$$x = y^2 - 6$$

$$x = y^2 - 6$$
Range of $f(x)$ is
$$\{y: y \ge 0\}$$

$$\{x: x \ge 0\}$$

$$\{x: x \ge 0\}$$

$$\{x: x \ge 0\}$$

$$\{x: x \ge 0\}$$
(iii) Where $y = f(x)$, $y = f^{-1}(x)$, $y = x$ intersect,
$$f^{-1}(x) = x \Rightarrow x^2 - 6 = x$$

$$x^2 - x - 6 = 0$$

$$(x + 2)(x - 3) = 0$$
But $x \ne -2$ (outside domain). $\therefore x = 3$
Hence intersection point of the curves is (3)

Hence intersection point of the curves is (3,3).

Question 4

•	П	· (a) Oı
• one mark for establishing the truth of $S(1)$		(a) Outcomes Assessed: HE2 Marki
s(1)	Criteria	Marking Guidelines
	Mar	

	• one mark for deducing $S(n)$ true for all integers $n \ge 1$
	• one mark for deducing $S(k)$ true $\Rightarrow S(k+1)$ true
S	• one mark for $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k)$
	• one mark for $S(k)$ true $\Rightarrow 5^k + 2(11^k) = 3M$ for some integer M.
	• one mark for establishing the truth of $S(1)$
Marks	Criteria

Define the sequence of statements S(n): $5^n + 2(11^n)$ is a multiple of 3, n = 1, 2, 3, ...

Consider
$$S(1)$$
: $S^1 + 2(11^1) = 27 = 3 \times 9$.: $S(1)$ is true.

If
$$S(k)$$
 is true, then $5^k + 2(11^k) = 3M$ for some integer M. **

Consider
$$S(k+1)$$
: $S^{k+1} + 2(11^{k+1}) = S(S^k) + 22(11^k) = S\{(S^k) + 2(11^k)\} + 12(11^k)$

$$\therefore 5^{k+1} + 2(11^{k+1}) = 5(3M) + 12(11^{k}) = 3(5M + 4(11^{k}))$$
 if $S(k)$ is true, using

But M and k integral
$$\Rightarrow \{5M+4(11^k)\}$$
 is an integer.

 \therefore S(k) true \Rightarrow S(k+1) true, k=1,2,3,...

and so on. Hence by Mathematical Induction, S(n) is true for all positive integers n. Hence S(1) is true, and if S(k) is true, then S(k+1) is true. S(2) is true, and then S(3) is true

(b) Outcomes Assessed: (i) H5 (ii) P5, H2 (iii) PE3

	Marking Guidelines	
	Criteria	Marks
0	 one mark for areas of small circle sector and triangle OPQ 	
1	• one mark for equating expression for shaded area to to of large circle area	
	one mark for simplification to find equation in required form	7
<u></u>	(ii) • one mark for showing $f(0.5)$, $f(0.6)$ have opposite signs	,
	• one mark for using continuity of $f(x)$ to deduce $0.5 < \alpha < 0.6$	
1	(iii) • one mark for expression for second approximation	
Т	one mark for calculation of second approximation	

Answer:

Area of $\triangle POQ = \frac{1}{7}(4^2)\sin x$ \therefore shaded area = $8\sin x - 2x$

Area small circle sector= $\frac{1}{2}(2^2) x$ $8 \sin x - 2x = \frac{1}{16} \pi (4^2) = \pi$ $8\sin x - 2x - \pi = 0$

> (ii) Let $f(x) = 8\sin x - 2x - \pi$. Then (iii) Taking a first approximation $\alpha \approx 0.6$, some $0.5 < \alpha < 0.6$. Hence, since f(x) is continuous, $f(\alpha) = 0$ for f(0.5) = -0.31 < 0 and f(0.6) = 0.18 > 0.

Newton's method gives a second approximation $\alpha \approx 0.6 - \frac{f(0.6)}{m_{\odot}^2}$ ≈ 0.56 to 2 decimal places. $= 0.6 - \frac{8\sin(0.6) - 2(0.6) - \pi}{2}$ f'(0.6) $8\cos(0.6) - 2$

Question 5

(a) Outcomes Assessed: HE6 Marking Guidelines

Criteria	Marks
one mark for change of limits	
 one mark for change of variable 	4
 one mark for integration 	
 one mark for evaluation 	

Let
$$I = \int_{1}^{49} \frac{1}{4(x+\sqrt{x})} dx$$
 Then $I = \int_{1}^{7} \frac{1}{4(u^{2}+u)} 2u du$

$$u^{2} = x , u > 0$$

$$2u = \frac{dx}{du} \implies dx = 2u du$$

$$x = 1 \implies u = 1, x = 49 \implies u = 7$$

$$\therefore I = \frac{1}{2}(\ln (u+1)]_{1}^{7}$$

$$\therefore I = \frac{1}{2}(\ln 8 - \ln 2) = \frac{1}{2} \ln 4 = \ln 2$$

(b) Outcomes Assessed: H5

Marking Guidelines

Criteria	Marks
• one mark for expressing $\sin^2 x$ in terms of $\cos 2x$	
 one mark for integration, including constant of integration 	_
• one mark for evaluation of $f\left(\frac{\pi}{4}\right)$, $f\left(\frac{3\pi}{4}\right)$	-
• one mark for value of difference	

Answer

$$\frac{dy}{dx} = \sin^2 x$$

$$= \frac{1}{2} (1 - \cos 2x)$$

$$y = \frac{1}{2} (x - \frac{1}{2} \sin 2x) + c, \quad c constant$$

$$= (\frac{3\pi}{8} - \frac{1}{4} \sin 2x) + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} \sin 2x) + c$$

$$= (\frac{3\pi}{8} + \frac{1}{4} + c) - (\frac{\pi}{8} - \frac{1}{4} + c) - (\frac{\pi}$$

$= \left(\frac{3\pi}{8} - \frac{1}{4}\sin\frac{3\pi}{2} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4}\sin\frac{\pi}{2} + c\right)$ $= \left(\frac{3\pi}{8} + \frac{1}{4} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4} + c\right)$

(c) Outcomes Assessed: (i) HE3 (ii) H5, HE3

Marking Guidelines

Criteria	Mar
(i) • one mark for finding the period of the motion	
(ii) • one mark for expressing v^2 in terms of t	
• one mark for expressing v^2 in terms of x	4
of the	

Answer:

(i) Period is
$$2\pi + \frac{\pi}{2} = 4$$
 seconds

$$x = 5\cos\frac{\pi}{2}t$$

$$v = \frac{dx}{dt} = 5\left(-\frac{\pi}{2}\sin\frac{\pi}{2}t\right)$$

$$v = \frac{dx}{dt} = 5\left(-\frac{\pi}{2}\sin\frac{\pi}{2}t\right)$$
$$v^2 = \left(\frac{\pi^2}{4}\right).25\sin^2\frac{\pi}{2}t$$

$$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25 \left(1 - \cos^{2}\frac{\pi}{2}t\right)$$
$$= \frac{\pi^{2}}{4} \left(25 - 25\cos^{2}\frac{\pi}{2}t\right)$$
$$v^{2} = \frac{\pi^{2}}{4} \left(25 - x^{2}\right)$$

$$x = 4 \implies v^2 = \frac{\pi^2}{4} (25 - 16) = \frac{9\pi^2}{4}$$

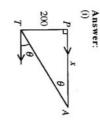
Speed is $\frac{3\pi}{2}$ ms⁻¹

Question 6

(a) Outcomes Assessed: (i) P4, HE4 (ii) HE4, HE5 (iii) H5

Marking Guidelines

(ii) • one mark for expression for $\frac{d\theta}{dt}$ • one mark for expression for $\frac{d\theta}{dt}$ • one mark for value of $\frac{d\theta}{dt}$ • one mark for value of θ	(i) • one mark for expression for θ $d\theta$
 ٠,	Marks



 $\tan \theta = \frac{200}{x}$ (alt. ∠s, parallel lines) $\angle TAP = \theta$

 Ξ

$$\frac{d\theta}{dx} = \frac{1}{1 + \left(\frac{200}{x}\right)^2} \left(-\frac{200}{x^2}\right) = \frac{-200}{x^2 + 40000}$$

$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt} = \frac{-200}{x^2 + 40000} \left(-80\right)$$

$$\therefore \frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$

(iii) When $\theta = \frac{\pi}{4}$, $TP = AP \implies x = 200$, and Hence θ is increasing at 11° s⁻¹ (correct to the nearest degree) $\frac{d\theta}{dt} = \frac{16000}{(200)^2 + 40000} = 0.2$ radians per second.

 $\theta = \tan^{-1} \frac{200}{x}$

(b) Outcomes Assessed: (i) HE5 (ii) H3, H5, HE4 (iii) HE3, HE7

Criteria	Marks
(i) • one mark for expression for a in terms of x	
(ii) • one mark for expressing t as an integral with respect to x	
 one mark for integration to find t in terms of x 	
• one mark for expression for x^2 in terms of t	7
(iii) • one mark for graph of x^2 as a function of t	
 one mark for limiting values of x, v, a 	
 one mark for description of limiting behaviour in words 	

Answer:

 Ξ

$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{1}{2} \frac{d}{dx} \left(\frac{1024}{x^2} - 32 + \frac{x^2}{4} \right)$$

$$\therefore a = \frac{-1024}{x^3} + \frac{x}{4}$$

$$\frac{dx}{dt} = v = \frac{32}{x} - \frac{x}{2} = \frac{64 - x^2}{2x}$$

$$\therefore \frac{dt}{dx} = \frac{2x}{64 - x^2}$$

$$t = \int \frac{2x}{64 - x^2} dx$$

(ii) Cont.
$$t = -\ln(64 - x^{2}) + c, \quad t = 0 \\ t = -\ln(64 - x^{2}) + c, \quad x = 2 \\ -t = \ln\left(\frac{64 - x^{2}}{60}\right), \quad e^{-t} = \frac{64 - x^{2}}{60}$$

As $t \to \infty$, $x \to 8^-$, $v \to \frac{32}{8} - \frac{8}{2} = 0^+$, $a \to \frac{-1024}{512} + \frac{8}{4} = 0^-$

Hence the particle is moving right and slowing down as it approaches its limiting position 8 metres to the right of $\,O$

Question 7

(a) Outcomes Assessed: (i) HE3 (ii) HE3

Criteria	arks
	CA ID
(ii) • one mark for value of probability (ii) • one mark for expression for probability of two 6's on first roll and no 6's on second • one mark for expression for probability of one 6 on first roll and one 6 on second	O.

Answer:

- (i) $P(one \ 6 \ on \ first \ roll) = {}^4C_1 \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^3 \approx 0.39$ (to 2 decimal places)
- (ii) $P(\text{two } 6 \text{ s on first roll and no } 6 \text{ s on second roll}) = {}^{4}C_{2}(\frac{1}{6})^{2}(\frac{1}{6})^{2} \times {}^{2}C_{3}(\frac{1}{6})^{3}(\frac{1}{6})^{2} \approx 0.0804$ $P(\text{one } 6 \text{ on first roll and one } 6 \text{ on second roll}) = {}^{4}C_{1}(\frac{1}{6})^{1}(\frac{1}{6})^{3} \times {}^{3}C_{1}(\frac{1}{6})^{1}(\frac{1}{6})^{2} \approx 0.1340$ $P(\text{no } 6 \text{ s on first roll and two } 6 \text{ s on second roll}) = {}^{4}C_{3}(\frac{1}{6})^{3}(\frac{1}{6})^{3} \times {}^{4}C_{3}(\frac{1}{6})^{3}(\frac{1}{6})^{3} \approx 0.0558$ $\therefore P(\text{two } 6 \text{ s overall}) \approx 0.0804 + 0.1340 + 0.0558 \approx 0.27 \text{ (to 2 decimal places)}$

(b) Outcomes Assessed: (i) HE3 (ii) HE3 (iii) P4, H2 (iv) P4, H2

Marking Guidelines

Criteria	Marks
(1) • one mark for expressions for x and y in terms of θ and t	
(ii) • one mark for expression for y in terms of x	_
• one mark for rearrangement as quadratic in $\tan \theta$	
(iii) • one mark for discriminant in terms of X and Y	7
 one mark for using discriminant > 0 to give required inequality 	
(iv) • one mark for the values of the sum and product of $\tan \alpha$, $\tan \beta$ in terms of X	
• one mark for the value of $\alpha + \beta$	

Answer:

(i)
$$x = 50 t \cos \theta$$
 and $y = 50 t \sin \theta - 5 t^2$ (iii) Projectile passes through the point (X, Y) if $\tan \theta$ satisfies the quadratic equation
$$t = \frac{x}{50 \cos \theta} \Rightarrow y = x \frac{\sin \theta}{\cos \theta} - \frac{5x^2}{2500 \cos^2 \theta} \qquad \frac{x^2 \tan^2 \theta - 500 X \tan \theta + (x^2 + 500 Y) = 0}{2500 \cos^2 \theta}$$
This equation has two distinct solutions for $\tan \theta = 500 x \tan \theta - x^2 (1 + \tan^2 \theta)$

$$= 500 x \tan \theta - x^2 (1 + \tan^2 \theta)$$

$$= 500 x \tan \theta - x^2 - x^2 \tan^2 \theta$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

$$\therefore x^2 \tan^2 \theta - 500 x \tan^2 \theta + (x^2 + 500 y) = 0$$

(iii) Projectile passes through the point
$$(X, Y)$$
 if $\tan \theta$ satisfies the quadratic equation $X^2 \tan^2 \theta - 500 \ X \tan \theta + (X^2 + 500 \ Y) = 0$
This equation has two distinct solutions for $\tan \theta$, and hence for θ , provided its discriminant $\Delta > 0$.
$$\Delta = (-500 \ X)^2 - 4 \ X^2 (X^2 + 500 \ Y)$$

$$= 4 X^2 (62.500 - X^2 - 500 \ Y)$$

(iv) If the projectile passes through the point
$$(X, X)$$
 where $500X < 62500 - X^2$ then the equation $X^2 \tan^2 \theta - 500 X \tan \theta + (X^2 + 500 X) = 0$ has two distinct real roots $\tan \alpha$, $\tan \beta$ where $\tan \alpha + \tan \beta = \frac{500}{X^2} = \frac{500}{X}$ and $\tan \alpha \tan \beta = \frac{X^2 + 500 X}{X^2} = 1 + \frac{500}{X}$

$$\therefore \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha} = \frac{500}{X} + \left(-\frac{500}{X}\right) = -1$$
Since $0 < \alpha + \beta < \pi$, $\alpha + \beta = \frac{3\pi}{4}$.