SYDNEY GRAMMAR SCHOOL

2003 FORM VI TRIAL HSC EXAMINATION

Chemistry

General Instructions

- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your student number at the top of each page in Part B

Total marks - 100

Section I Pages 2 - 24

75 marks

This section has two parts, Part A and Part B

Part A - 15 marks

- Attempt Questions 1 15
- Allow about 30 minutes for this part

Part B - 60 marks

- Attempt Questions 16 28
- Allow about 1 hour and 45 minutes for this part

Section II Pages 25 - 29

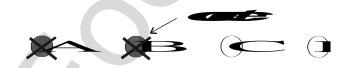
25 marks

- Attempt ONE Question from Questions 29 32
- Allow about 45 minutes for this Section

Part A

Total marks (15) Attempt Questions 1 - 15 Allow about 30 minutes for this Part

Use the multiple-choice Answer Sheet.


Select the alternative A, B, C or D that best answers the question. Fill the response oval completely.

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

- 1 Which of the following instruments is used to detect radioactivity?
 - (A) Reflux apparatus
 - (B) UV visible spectrometer
 - (C) Microscopic membrane filter
 - (D) Geiger counter
- 2 Plastic film for wrapping sandwiches is made from which of the following polymers?
 - (A) Low density polyethylene
 - (B) High density polyethylene
 - (C) Polystyrene
 - (D) Poly(vinyl chloride)
- 3 How can atomic absorption spectroscopy be used in the detection of pollutants?
 - (A) To find organic contaminants in a water supply.
 - (B) To analyse concentrations of non-metals in solution.
 - (C) To find the pH of a water supply.
 - (D) To analyse concentrations of metals in solution.
- Which of the following indicators would be best for the titration of a weak acid with a strong base?
 - (A) Litmus
 - (B) Phenolphthalein
 - (C) Methyl orange
 - (D) Bromothymol blue
- 5 Which of the following is an industrial source of ethylene?
 - (A) The cracking of alkanes.
 - (B) The cracking of alkanols.
 - (C) The cracking of styrene.
 - (D) The cracking of polyethylene.
- Which of the following chemical tests could distinguish between 1-hexene and hexane?
 - (A) Addition of CO_3^{2-} (aq)
 - (B) Addition of SO_4^{2} -(aq)
 - (C) Addition of $Br_2(aq)$
 - (D) Addition of Ag⁺(aq)

Form	VI Cher	mistry		2003 Trial Examina
7		n of the following types atomic number?	of radioactive decay	produces an element with a
	(A) (B) (C) (D)	α and β decay gammma ray emission α decay only β decay only		
8		n of the following method stage of aspirin (acetylsa	-	the laboratory to find the let?
	(A) (B) (C) (D)	distillation titration gravimetric analysis evaporation	C	
9	In wh	ich species does mangar	ese have an oxidatio	on number of VII?
	(A) (B) (C) (D)	MnO ₄ MnO ₂ Mn(OH) ₂ MnO(OH) ₃	6	

- (A) 0.8
- (B) 0.3
- 2.5 (C)
- (D) 1.0
- 11 Which of the following statements is true of a saturated solution of sodium carbonate?
 - Addition of HCl(aq) would produce a precipitate. (A)
 - (B) Addition of NaCl(aq) would produce a precipitate.
 - Addition of CaCl₂(aq) would not produce a precipitate. (C)
 - Addition of HCl(aq) would produce a gas. (D)

12 The formulas of four compounds are given below.

CHCl ₂ CHFCH ₃	$CH_3(CH_2)_4CH_3$	CCl ₃ CClF ₂	CClF ₂ CCl ₂ F
W	X	Y	Z

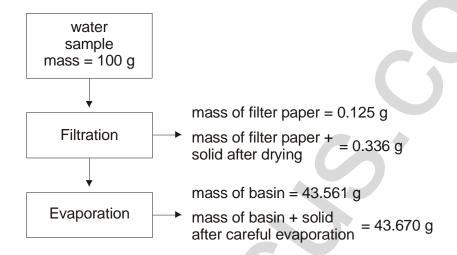
Which of these compounds are CFC's?

- (A) W and X
- (B) X and Y
- (C) Y and Z
- (D) W and Z
- Which one of the following equations shows water acting as an amphiprotic species?
 - (A) $H_2O(1) + H^+(aq) \rightarrow H_3O^+(aq)$
 - (B) $2H_2O(1) \rightarrow H_3O^+(aq) + OH^-(aq)$
 - (C) $H_2O(1) \rightarrow H_3O^+(aq) + OH^-(aq)$
 - (D) $2H_2O(1) \rightarrow H^+(aq) + OH^-(aq)$
- Which of the following chemists based his ideas of acids and bases on the fact that HCl and HCN for example were found not to contain oxygen?
 - (A) Davy
 - (B) Arrhenius
 - (C) Lavoisier
 - (D) Lowry
- Which of the following statements is true of an equilibrium system?
 - (A) Changes to the system are minimised by a shift in the equilibrium position.
 - (B) There is constant change so properties such as colour or concentration continuously change.
 - (C) Changes to the system are completely reversed by a shift in the equilibrium position.
 - (D) There is constant change so rates of the forward and reverse reactions are never equal.

2003 Trial Examination								
			•		(Clas	S	
Candidate Number								

BLANK PAGE

Form VI Chemistry	2003 Trial Examination
Part B	Class
Total marks (60)	
Attempt Questions 16 - 28	Candidate Number
Allow about 1 hour and 45 minutes for this Part	
Answer the questions in the spaces provided	
Show all relevant working in questions involving calcula	ations
	Marks
Question 16 (2 marks)	1744143
Question 10 (2 mains)	
Isotopas may be stable or unstable depending upon the numb	er of protons present.
Isotopes may be stable or unstable depending upon the numb and the neutron to proton ratio.	er or protons present,
Use equations to illustrate two modes of radioactive decay.	


Form VI Chemistry		200	3 Tria	a <u>l</u> Ex	amir	natic	n	
					C	Class	3	
		(Candio	date	Num	ıber		
						Μ	ark	S
Question 17 (2 marks)								
Question 17 (2 marks)								
The carbon compound $C_5H_{11}Cl$ can exist as eight isomers. Draw systematic name of two of these isomers.	w and	give	the			,		2
)							

Form VI Chemistry		2003	Tria	I Exa	amir	natio	on	
	_				C	Class	S	
		Ca	ndid	ate l	Num	ıber		
						1./	[arl	احم
						101	ları	KS
Question 18 (3 marks)								
			4			•		
Account for the many uses of ethanol as a solvent.								3
	• • • • • • • • • • • • • • • • • • • •)		•			
)		•			
				• • • • •	•			

Marks

Question 19 (3 marks)

A water sample from a local creek was analysed and the following data collected.

(a)	sample.	2
(b)	Describe a test that could be carried out on the water sample to find the level of dissolved oxygen.	1

	Form VI Chemistry	2003 Trial Examinat	ion
		Cla	SS
		Candidate Numbe	er
		I	Marks
Que	stion 20 (4 marks)		
(a)	Write the equation for the formation of ammonia in the Indicate whether the reaction is exothermic or endother		1
(b)	The following conditions may be used in the Haber pro	ocess:	3
	• high pressure (35 MPa)	*	
	• intermediate temperature (525°C)		
	 a catalyst of Fe / Fe₃O₄ 		
	Explain the choice of the three conditions described at manufacture of ammonia.	pove in the	

Form VI Chemistry

2003 Trial Examination								
			•		(Clas	S	
Candidate Number								

BLANK PAGE

Form VI Chemistry	2003 Trial Exa					amination				
					Cla	ass				
		Can	dida	ite N	Numb	er				
						3. <i>a</i>				
						Mar	KS			
Question 21 (5 marks)										
When a piece of zinc is added to an aqueous solution of copper(a colour of the solution fades, the zinc disappears, and a brown so			blu	e						
(a) Explain these observations in terms of oxidation and rec	duction	nsino	, hal	f			3			
equations to illustrate your answer.	duction,	GSIIIE	, IIdi	<i>,</i> *			J			
1										
(b) Calculate the voltage produced if a galvanic cell was pr	oduced i	using	zino	ε,			2			
copper and an appropriate electrolyte solution.										
				· • • • • •						

Form VI Chemistry	2003 Trial Examination
	Class
	Condidate Number
	Candidate Number
	Marks
Question 22 (5 marks)	
Compare addition polymerisation and condensation	polymerisation, using a specific 5
example of each to illustrate your answer.	

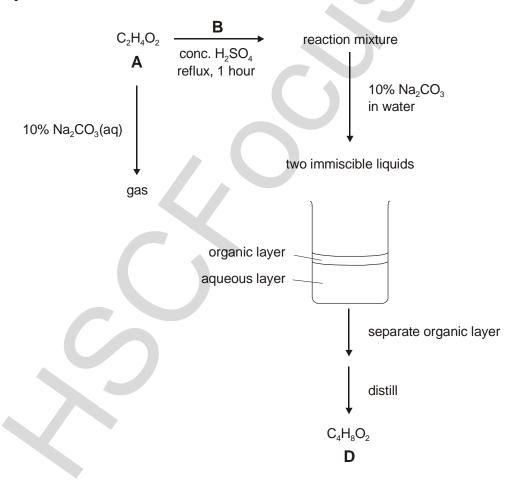
Form VI Chemistry	2003 Trial Examination
	Class
	Candidate Number
	Marks
Question 23 (5 marks)	
(**************************************	
Haman adaine in a san and a san a Biana dhia data	
Human activity impacts on waterways. Discuss this state nitrate and phosphate levels in natural bodies of water.	ment with reference to 5
intrate and phosphate levels in natural bodies of water.	

2003 Trial Examination								
			•		(Clas	S	
Candidate Number								

BLANK PAGE

Form VI Chemistry		20	003	Tria	l Ex	ami	nati	on	
							Clas	<u> </u>	
						Τ,	_ias	S	
			Car	ndid	late	 Nun	nher	<u> </u>	
			Cai	lulu	iaic	INUII	11061		
							N	Iarl	ks
Question 24 (5 marks)									
				4					
Consider a cold, unopened bottle of soft drink, which has just be refrigerator. Explain the changes in the amount of dissolved car bottle is opened and as it warms up.	en rei bon d	mov ioxi	ed i ide v	fron whe	n the n th	e e			5
			•			••			
	<u> </u>			• • • •					
				• • • •		••			
				• • • •					
				• • • •					

Marks


Question 25 (9 marks)

The compound A ($C_2H_4O_2$) reacts with 10% sodium carbonate solution liberating a gas that turns lime water milky.

When **A** is heated under reflux with another organic compound **B** in the presence of a little concentrated sulphuric acid, a new substance \mathbf{D} (C₄H₈O₂) can be obtained.

When the reaction is finished, the cooled reaction mixture is poured into a beaker containing an excess of 10% aqueous sodium carbonate solution. Two layers form. The organic layer is separated from the aqueous layer and then distilled to yield pure \mathbf{D} .

The process is outlined below:

Question 25 continues on page 19

	Form VI Chemistry	2003 Trial Examination
		Class
		Condidate Number
		Candidate Number
		Marks
0116	estion 25 (continued)	
Que	stion 25 (continued)	
(a)	Draw and label a diagram of the apparatus t	used to heat the reaction mixture 3
. ,	under reflux.	
(b)	Explain why reflux is used in this reaction.	2
(U)	Explain why femax is used in this feaction.	2
		••••••
(c)	The yield of D was found to be 50%. Expla	ain this result.

Question 25 continues on page 20

F	Form VI Chemistry	2003 Trial	Examination	1
			Class	
			Class	
		Candida	ate Number	
			Ma	rks
Questi	tion 25 (continued)			
				_
(d)	Calculate the volume (at 25°C and 100 kPa) of CO ₂ (g) produc	ed when		3
	2.54 g of A reacts completely with excess Na ₂ CO ₃ (aq).			
			• • • • • •	
		••••		
			••••	

Form VI Chemistry

2003 Trial Examination								
			ı		(Clas	S	
Candidate Number								

Marks

Question 26 (5 marks)

Oxygen and its allotrope, ozone are both found in the Earth's atmosphere.

(a)	Compare the structure and bonding of these two allotropes and use diagrams to illustrate your answer.	3
(b)	Explain how ozone occurs in the stratosphere.	1
(c)	A high altitude balloon measured the concentration of ozone as 1.23 mL per 100 litres of air.	1
	Express this concentration of ozone in ppm.	

Form VI Chemistry	2003 Trial Examination
	Class
	Candidate Number
	Marks
Question 27 (5 marks)	
25.00 mL of 0.025 M silver nitrate solution was titrated with	sodium chloride
solution of unknown concentration. A conductivity probe con	
was used to monitor the reaction. The results are shown below	W.
ıit	
ıctiv	
conductivity	
8	
0 2 4 6 8 10 12 14 16	18 20
volume of NaCl(aq) added (ml	L)
(a) Write a balanced chemical equation for the reaction	taking place. 1
(b) What volume of sodium chloride solution was requir	red for complete 1
reaction?	r

Question 27 continues on page 23

		Class
	Candid	ate Number
	Candida	ate rumber
		Marks
Questi	ion 27 (continued)	
(c)	Calculate the concentration of the NaCl(aq).	2
(-)		_
		•••••
(d)	Why does the conductivity not drop to zero?	1
		••••
	▼	

2003 Trial Examination

Form VI Chemistry

Form VI Chemistry	2003 Trial Examination	
	Class	
	Candidate Number	
	Mar	ks
Question 28 (7 marks)		
Assess the impact of advances in polymerisation reactions on soc	eiety and the	7
environment.		

Section II

Total marks (25) Attempt ONE question from Questions 29 - 32 Allow about 45 minutes for this Section

Answer the question in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations.

		Pages
Question 29	Industrial Chemistry	27
Question 30	Shipwrecks and Salvage	
Question 31	Biochemistry of Movement	
Question 32	Chemistry of Art	28-29

Marks

1

4

2

3

2

4

6

Question 29 - Industrial Chemistry (25 marks)

- (a) An important role of the chemical industry is to provide alternatives to natural products.
 - (i) State one dwindling natural resource which is not a fossil fuel.
 - (ii) Outline two uses of the natural product identified in (i) and name a replacement material used instead.
- (b) The following equation represents the decomposition of hydrogen iodide.

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

0.002 mol of hydrogen iodide was heated at 764 K in a 1000 cm³ bulb. When an equilibrium was established the amount of iodine present was determined. 0.00028 moles of iodine were present.

Calculate K for the reaction at 764 K.

- (c) Sulfuric acid is an important industrial chemical.
 - (i) Outline one industrial use of sulphuric acid, illustrating your answer with a chemical equation.
 - (ii) Describe the process used to extract sulfur from mineral deposits, and identify a property of sulfur which allows this.
- (d) Outline and explain the safe dilution of concentrated sulphuric acid.
 - (ii) Describe an experiment you have done to investigate the reaction of sulphuric acid as a dehydrating or oxidising agent.
- (e) Discuss the following statement.

The conversion of molten sulphuric acid (the Contact Process) is a multi-step process. The conditions used for the conversion of SO_2 to SO_3 are a compromise between reaction rate and equilibrium yield.

End of Question 29

Marks

1

Question 32 - Chemistry of Art (25 marks)

- (a) (i) Name and give the chemical composition and colour of a pigment used by Australian Aboriginal people.
 - (ii) Illustrate the relationship between the discovery of new mineral deposits and an increase in the range of available pigments by describing an historical example.
- (b) Discuss the use of two pigments by early Egyptian or Roman people. 4
- (c) Na⁺, K⁺, Ca²⁺, Ba²⁺, Sr²⁺ and Cu²⁺ can be identified by their flame colour.

A colourless solution contained two of the above ions. When a solution of potassium carbonate was added to the unknown solution a dense white precipitation formed. When precipitation was complete, the solid was filtered off and washed.

The filtrate gave a yellow flame colour.

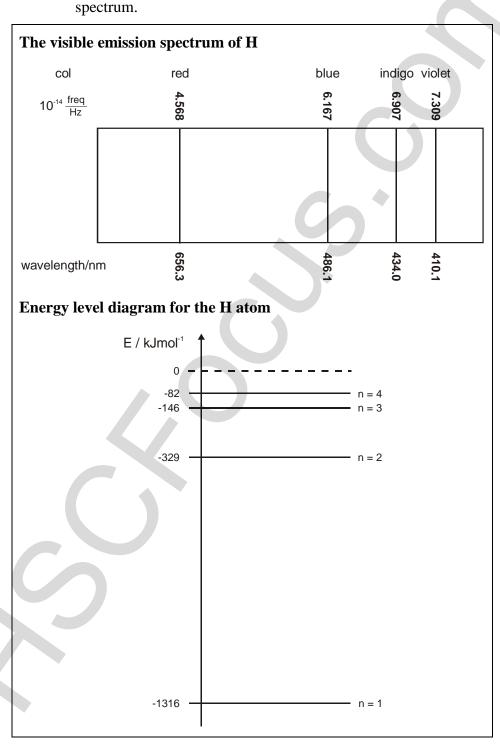
The solid residue was 'dissolved' in hydrochloric acid and the solution flame tested – giving a green colour.

- (i) What cations were present in the original solution?
- (ii) Describe how a flame test is carried out.

3

2

Question 32 continues on page 29


Marks

2

4

Question 32 (continued)

- (d) Explain how the Pauli exclusion principle and Hund's rule can be used to predict the arrangement of electrons in atoms.
 - (ii) Use the information in the diagrams below to describe the development of the Bohr model of the atom from the hydrogen

(e) Describe the use of laser microspectral analysis in art.

6

Chemistry

Data Sheet

Avogadro's constant, N _A		$6.022 \text{ x} 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0 °C (273 K)	22.71L
	at 25 °C (298K)	24.79 L
Ionisation constant for water	1.0×10^{-14}	
Specific heat capacity of wat	er	$4.18 \times 10^3 \mathrm{Jkg^{-1}K^{-1}}$

Some useful formulae

 $pH = -\log_{10}[H^+] \qquad \Delta H = -mC\Delta T$

Standard Potentials

$K^+ + e^-$	$\overline{}$	$\mathbf{K}_{(\mathrm{s})}$	-2.94 V
$Ba^{2+} + 2e^{-}$		$Ba_{(s)}$	−2.91 V
$Ca^{2+} + 2e^{-}$		$Ca_{(s)}$	−2.87 V
$Na^+ + e^-$		$Na_{(s)}$	−2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	$Mg_{(s)}$	-2.36 V
$Al^{3+} + 3e^{-}$	=	$Al_{(s)}$	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	$Mn_{(s)}$	-1.18 V
$H_2O + e^-$	=	$\frac{1}{2}$ $H_{2(g)} + OH^{-}$	-0.83 V
$Zn^{2+} + 2e^{-}$		$Zn_{(s)}$	–0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	$Fe_{(s)}$	-0.44 V
$Ni^{2+} + 2e^{-}$		$Ni_{(s)}$	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$		$Sn_{(s)}$	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	$Pb_{(s)}$	–0.13 V
$H^+ + e^-$	=	½ H _{2(g)}	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$		$Cu_{(s)}$	0.34 V
$^{1}/_{2}$ $O_{2(g)} + H_{2}O + 2e^{-}$		2OH ⁻	0.40 V
$Cu^+ + e^-$	=	$Cu_{(s)}$	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-}$	=	I-	0.54 V
$^{1}/_{2}I_{2(aq)}+e^{-}$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	$Ag_{(s)}$	0.80 V
$^{1}/_{2} Br_{2(1)} + e^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$^{1}/_{2} Br_{2(aq)} + e^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$^{1}/_{2}$ O ₂ + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2} \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 7 \operatorname{H}^+ + 3 \operatorname{e}^-$	\rightleftharpoons	$Cr^{3+} + \frac{7}{2} H_2O$	1.36 V
$\frac{1}{2} \operatorname{Cl}_{2(g)} + e^{-}$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2} \text{Cl}_{2(aq)} + e^{-}$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-}$	\rightleftharpoons	F^-	2.89 V

2 He 4.003 Belium	10 Nc 20.18 Neus	18 Ar 39.95 Agen	36 Kr 83,80	S4 Xe 131.3	86 Rn (222.0) Radon	Uno Uno
	9 F 19,00 Flumbs	17 Cl 35.45 Chindae	35 Br 79.90	53 1 126.9	85 At [210.0] Astaline	117
	8 O 16.00	16 S 32,07 satur	78.96 78.96	\$2 Te	84 Po [210.0] Polostas	Cuh
	7 N 14.01 Ninegest	15 P 30,97 Phosphores	33 As 74.92	Sh 121.8	83 Bi 209,0 Bisenuth	115
	6 C 12.01 Cuthon	2000		Sn 118.7	Pb 207.2	Usq Usq
ELEMENTS	5 B 10.81 Benns	Al Al 26.98 Alminian	31 Ga 69.72	49 In 114.8	81 T1 204.4 Thellium	E13
		•	30 Zn 65.39	85 E	80 Hg 200.6 Memay	112 Cub
	na ni		29 Cu 63.55	47 Ag 107.9	79 Au 197.0 Gold	331
OF THE	Symbol of element Name of element		85 Z:8	PS 24	78 Pt 195.1	110 120 100 100 100 100 100 100 100 100
	79 Au 197.0		27 Co 58.93	\$ ± 202.0	Khodoun Tr 192.2 Isidam	109 Mt [268]
	Atomic Number Atomic Weight	,	26 Fe 55.85	10K#	76 Os 190.2 Oserinas	108 Hs [265.1]
	N.		25 Mn 54.94	Angunese Tc [98.91]	75 Rc 186.2 Beetum	107 Bh [264.1]
			24 Cr 52.00	42 Mo 95.94	74 W 183.8 Tengeon	106 Sg [263.1]
			23 V 50.94	NB 92.91	73 Ta 180.9 Tantahan	105 Db [262.1]
			72 T 47.87	740 Zr 91.22	72 Hf 178.5 Hathium	104 Rr [261.1]
			21 Sc 44.96	39 Y 88.91	S7-71	89-103
	4 Be 9.012 Reryllium	12 Mg 24.31 Magnesium	80°9 40°08	38 Sr 87.62	Sf6 Ba 137.3	88 Ra [226.0]
1 H 1,008 Hydrogen	3 Li 6.941	Na 222.99 Sodem	19 K 39.10	37 Rb 85.47	SS Cs 132.9 Cuestum	87 Fr [223.0]

71 Lu 175.0 Luctim		103 Fr	[262.1]	THE PERSON NAMED IN COLUMN 1
70 Yb 173.0		102 No	Second 17	
69 Tm 168.9		101	[258.1] Mentelecture	The same of the same of
68 Er 167.3 Erism		00l	[257.1]	1
67 Hto 164.9 Holmstep		99 Es	[252.1] Ensorialum	
66 Dy 162.5 Dyepmentern		SC 86	[252.1] Calfornium	
65 Tb 158.9 Tethtun		97 Bk	[249.1] Bedeelium	-
64 Gd 157.3 Gabrinam		8. E. 36	[244.1] Outum	111111111111111111111111111111111111111
63 Eu 152.0 Berepten		95 Am	[241.1] American	
62 Sm 150,4 Semation		94 Pu	[239.1]	-
61 Pm [146.9] Prosedhian		88. 8	[237,0]	-
60 Nd 144.2 Noodywinn		92 U	238.0	-
59 Pr 140.9 Pracestynium		91 Pa	231.0 Perceptiminan	-
58 CC 140.1		8H	232.0 Therdure	-
57 La 138.9	inides	89 Ac	227.0]	-

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁸Tc.